2025-02-22T16:23:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154834%22&qt=morelikethis&rows=5
2025-02-22T16:23:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-154834%22&qt=morelikethis&rows=5
2025-02-22T16:23:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T16:23:20-05:00 DEBUG: Deserialized SOLR response
Generalized ⊕-supplemented modules
Let R be a ring and M be a left R-module. M is called generalized ⊕- supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized ⊕-supplemented modules is...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2010
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/154834 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-154834 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1548342019-06-17T01:31:21Z Generalized ⊕-supplemented modules Calısıcı, H. Turkmen, E. Let R be a ring and M be a left R-module. M is called generalized ⊕- supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized ⊕-supplemented modules is generalized ⊕-supplemented. If M is a generalized ⊕-supplemented module with (D3), then every direct summand of M is generalized ⊕-supplemented. We also give some properties of generalized cover. 2010 Article Generalized ⊕-supplemented modules / H. Calısıcı, E. Turkmen // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 10–18. — Бібліогр.: 10 назв. — англ. 2000 Mathematics Subject Classification:16D10,16D99. http://dspace.nbuv.gov.ua/handle/123456789/154834 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let R be a ring and M be a left R-module. M is called generalized ⊕- supplemented if every submodule of M has a generalized supplement that is a direct summand of M. In this paper we give various properties of such modules. We show that any finite direct sum of generalized ⊕-supplemented modules is generalized ⊕-supplemented. If M is a generalized ⊕-supplemented module with (D3), then every direct summand of M is generalized ⊕-supplemented. We also give some properties of generalized cover. |
format |
Article |
author |
Calısıcı, H. Turkmen, E. |
spellingShingle |
Calısıcı, H. Turkmen, E. Generalized ⊕-supplemented modules Algebra and Discrete Mathematics |
author_facet |
Calısıcı, H. Turkmen, E. |
author_sort |
Calısıcı, H. |
title |
Generalized ⊕-supplemented modules |
title_short |
Generalized ⊕-supplemented modules |
title_full |
Generalized ⊕-supplemented modules |
title_fullStr |
Generalized ⊕-supplemented modules |
title_full_unstemmed |
Generalized ⊕-supplemented modules |
title_sort |
generalized ⊕-supplemented modules |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154834 |
citation_txt |
Generalized ⊕-supplemented modules / H. Calısıcı, E. Turkmen // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 10–18. — Бібліогр.: 10 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT calısıcıh generalizedsupplementedmodules AT turkmene generalizedsupplementedmodules |
first_indexed |
2023-05-20T17:45:23Z |
last_indexed |
2023-05-20T17:45:23Z |
_version_ |
1796154012480831488 |