A generalization of supplemented modules

Let R be an arbitrary ring with identity and M a right R-module. In this paper, we introduce a class of modules which is an analogous of δ-supplemented modules defined by Kosan. The module M is called principally δ-supplemented, for all m∈M there exists a submodule A of M with M=mR+A and (mR)∩A δ-...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Inankil, H., Halıcıoglu, S., Harmanci, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154837
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A generalization of supplemented modules / H. Inankil, S. Halıcıoglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 59–74 — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154837
record_format dspace
spelling irk-123456789-1548372019-06-17T01:31:12Z A generalization of supplemented modules Inankil, H. Halıcıoglu, S. Harmanci, A. Let R be an arbitrary ring with identity and M a right R-module. In this paper, we introduce a class of modules which is an analogous of δ-supplemented modules defined by Kosan. The module M is called principally δ-supplemented, for all m∈M there exists a submodule A of M with M=mR+A and (mR)∩A δ-small in A. We prove that some results of δ-supplemented modules can be extended to principally δ-supplemented modules for this general settings. We supply some examples showing that there are principally δ-supplemented modules but not δ-supplemented. We also introduce principally δ-semiperfect modules as a generalization of δ-semiperfect modules and investigate their properties. 2011 Article A generalization of supplemented modules / H. Inankil, S. Halıcıoglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 59–74 — Бібліогр.: 16 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16U80. http://dspace.nbuv.gov.ua/handle/123456789/154837 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let R be an arbitrary ring with identity and M a right R-module. In this paper, we introduce a class of modules which is an analogous of δ-supplemented modules defined by Kosan. The module M is called principally δ-supplemented, for all m∈M there exists a submodule A of M with M=mR+A and (mR)∩A δ-small in A. We prove that some results of δ-supplemented modules can be extended to principally δ-supplemented modules for this general settings. We supply some examples showing that there are principally δ-supplemented modules but not δ-supplemented. We also introduce principally δ-semiperfect modules as a generalization of δ-semiperfect modules and investigate their properties.
format Article
author Inankil, H.
Halıcıoglu, S.
Harmanci, A.
spellingShingle Inankil, H.
Halıcıoglu, S.
Harmanci, A.
A generalization of supplemented modules
Algebra and Discrete Mathematics
author_facet Inankil, H.
Halıcıoglu, S.
Harmanci, A.
author_sort Inankil, H.
title A generalization of supplemented modules
title_short A generalization of supplemented modules
title_full A generalization of supplemented modules
title_fullStr A generalization of supplemented modules
title_full_unstemmed A generalization of supplemented modules
title_sort generalization of supplemented modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/154837
citation_txt A generalization of supplemented modules / H. Inankil, S. Halıcıoglu, A. Harmanci // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 59–74 — Бібліогр.: 16 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT inankilh ageneralizationofsupplementedmodules
AT halıcıoglus ageneralizationofsupplementedmodules
AT harmancia ageneralizationofsupplementedmodules
AT inankilh generalizationofsupplementedmodules
AT halıcıoglus generalizationofsupplementedmodules
AT harmancia generalizationofsupplementedmodules
first_indexed 2023-05-20T17:45:23Z
last_indexed 2023-05-20T17:45:23Z
_version_ 1796154012585689088