On Pseudo-valuation rings and their extensions
Let R be a commutative Noetherian Q-algebra (Q is the field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation of R. We define a δ-divided ring and prove the following: (1)If R is a pseudo-valuation ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154862 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Pseudo-valuation rings and their extensions / V.K. Bhat // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 25–30. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154862 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1548622019-06-17T01:30:33Z On Pseudo-valuation rings and their extensions Bhat, V.K. Let R be a commutative Noetherian Q-algebra (Q is the field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation of R. We define a δ-divided ring and prove the following: (1)If R is a pseudo-valuation ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime ideal of R with σ(P∩R)=P∩R and δ(P∩R)⊆P∩R, then R[x;σ,δ] is also a pseudo-valuation ring. (2)If R is a δ-divided ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime ideal of R with σ(P∩R)=P∩R and δ(P∩R)⊆P∩R, then R[x;σ,δ] is also a δ-divided ring. 2011 Article On Pseudo-valuation rings and their extensions / V.K. Bhat // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 25–30. — Бібліогр.: 14 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16S36, 16N40, 16P40, 16S32 http://dspace.nbuv.gov.ua/handle/123456789/154862 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let R be a commutative Noetherian Q-algebra (Q
is the field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation of R. We define a δ-divided ring and prove the following:
(1)If R is a pseudo-valuation ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime ideal of R with σ(P∩R)=P∩R and δ(P∩R)⊆P∩R, then R[x;σ,δ] is also a pseudo-valuation ring.
(2)If R is a δ-divided ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime ideal of R with σ(P∩R)=P∩R and δ(P∩R)⊆P∩R, then R[x;σ,δ] is also a δ-divided ring. |
format |
Article |
author |
Bhat, V.K. |
spellingShingle |
Bhat, V.K. On Pseudo-valuation rings and their extensions Algebra and Discrete Mathematics |
author_facet |
Bhat, V.K. |
author_sort |
Bhat, V.K. |
title |
On Pseudo-valuation rings and their extensions |
title_short |
On Pseudo-valuation rings and their extensions |
title_full |
On Pseudo-valuation rings and their extensions |
title_fullStr |
On Pseudo-valuation rings and their extensions |
title_full_unstemmed |
On Pseudo-valuation rings and their extensions |
title_sort |
on pseudo-valuation rings and their extensions |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154862 |
citation_txt |
On Pseudo-valuation rings and their extensions / V.K. Bhat // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 25–30. — Бібліогр.: 14 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bhatvk onpseudovaluationringsandtheirextensions |
first_indexed |
2023-05-20T17:45:25Z |
last_indexed |
2023-05-20T17:45:25Z |
_version_ |
1796154020081958912 |