On Pseudo-valuation rings and their extensions

Let R be a commutative Noetherian Q-algebra (Q is the field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation of R. We define a δ-divided ring and prove the following: (1)If R is a pseudo-valuation ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Bhat, V.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2011
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154862
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Pseudo-valuation rings and their extensions / V.K. Bhat // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 25–30. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154862
record_format dspace
spelling irk-123456789-1548622019-06-17T01:30:33Z On Pseudo-valuation rings and their extensions Bhat, V.K. Let R be a commutative Noetherian Q-algebra (Q is the field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation of R. We define a δ-divided ring and prove the following: (1)If R is a pseudo-valuation ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime ideal of R with σ(P∩R)=P∩R and δ(P∩R)⊆P∩R, then R[x;σ,δ] is also a pseudo-valuation ring. (2)If R is a δ-divided ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime ideal of R with σ(P∩R)=P∩R and δ(P∩R)⊆P∩R, then R[x;σ,δ] is also a δ-divided ring. 2011 Article On Pseudo-valuation rings and their extensions / V.K. Bhat // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 25–30. — Бібліогр.: 14 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16S36, 16N40, 16P40, 16S32 http://dspace.nbuv.gov.ua/handle/123456789/154862 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let R be a commutative Noetherian Q-algebra (Q is the field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation of R. We define a δ-divided ring and prove the following: (1)If R is a pseudo-valuation ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime ideal of R with σ(P∩R)=P∩R and δ(P∩R)⊆P∩R, then R[x;σ,δ] is also a pseudo-valuation ring. (2)If R is a δ-divided ring such that x∉P for any prime ideal P of R[x;σ,δ], and P∩R is a prime ideal of R with σ(P∩R)=P∩R and δ(P∩R)⊆P∩R, then R[x;σ,δ] is also a δ-divided ring.
format Article
author Bhat, V.K.
spellingShingle Bhat, V.K.
On Pseudo-valuation rings and their extensions
Algebra and Discrete Mathematics
author_facet Bhat, V.K.
author_sort Bhat, V.K.
title On Pseudo-valuation rings and their extensions
title_short On Pseudo-valuation rings and their extensions
title_full On Pseudo-valuation rings and their extensions
title_fullStr On Pseudo-valuation rings and their extensions
title_full_unstemmed On Pseudo-valuation rings and their extensions
title_sort on pseudo-valuation rings and their extensions
publisher Інститут прикладної математики і механіки НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/154862
citation_txt On Pseudo-valuation rings and their extensions / V.K. Bhat // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 25–30. — Бібліогр.: 14 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT bhatvk onpseudovaluationringsandtheirextensions
first_indexed 2023-05-20T17:45:25Z
last_indexed 2023-05-20T17:45:25Z
_version_ 1796154020081958912