Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones

Let G be a simple graph and let Ic(G) be its ideal of vertex covers. We give a graph theoretical description of the irreducible b-vertex covers of G, i.e., we describe the minimal generators of the symbolic Rees algebra of Ic(G). Then we study the irreducible b-vertex covers of the blocker of G, i.e...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Dupont, L.D., Villarreal, R.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154873
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones / L.A. Dupont, R.H. Villarreal // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 64–86. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let G be a simple graph and let Ic(G) be its ideal of vertex covers. We give a graph theoretical description of the irreducible b-vertex covers of G, i.e., we describe the minimal generators of the symbolic Rees algebra of Ic(G). Then we study the irreducible b-vertex covers of the blocker of G, i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of G. We give a graph theoretical description of the irreducible binary b-vertex covers of the blocker of G. It is shown that they correspond to irreducible induced subgraphs of G. As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of G. In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible b-vertex covers of the blocker of G with high degree relative to the number of vertices of G.