On separable group rings

Let G be a finite non-abelian group, R a ring with 1, and Ĝ the inner automorphism group of the group ring RG over R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of (RG)Ĝ with Galois group Ĝ when the order of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Szeto, G., Lianyong Xue
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154882
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On separable group rings / G. Szeto, Lianyong Xue // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 104–111. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154882
record_format dspace
spelling irk-123456789-1548822019-06-17T01:31:29Z On separable group rings Szeto, G. Lianyong Xue Let G be a finite non-abelian group, R a ring with 1, and Ĝ the inner automorphism group of the group ring RG over R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of (RG)Ĝ with Galois group Ĝ when the order of G is invertible in R, (ii) an equivalent condition for the Galois map from the subgroups H of G to (RG)H by the conjugate action of elements in H on RG is given to be one-to-one and for a separable subalgebra of RG having a preimage, respectively, and (iii) the Galois map is not an onto map. Remove selected 2010 Article On separable group rings / G. Szeto, Lianyong Xue // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 104–111. — Бібліогр.: 13 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16S35, 16W20. http://dspace.nbuv.gov.ua/handle/123456789/154882 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a finite non-abelian group, R a ring with 1, and Ĝ the inner automorphism group of the group ring RG over R induced by the elements of G. Then three main results are shown for the separable group ring RG over R: (i) RG is not a Galois extension of (RG)Ĝ with Galois group Ĝ when the order of G is invertible in R, (ii) an equivalent condition for the Galois map from the subgroups H of G to (RG)H by the conjugate action of elements in H on RG is given to be one-to-one and for a separable subalgebra of RG having a preimage, respectively, and (iii) the Galois map is not an onto map. Remove selected
format Article
author Szeto, G.
Lianyong Xue
spellingShingle Szeto, G.
Lianyong Xue
On separable group rings
Algebra and Discrete Mathematics
author_facet Szeto, G.
Lianyong Xue
author_sort Szeto, G.
title On separable group rings
title_short On separable group rings
title_full On separable group rings
title_fullStr On separable group rings
title_full_unstemmed On separable group rings
title_sort on separable group rings
publisher Інститут прикладної математики і механіки НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/154882
citation_txt On separable group rings / G. Szeto, Lianyong Xue // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 104–111. — Бібліогр.: 13 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT szetog onseparablegrouprings
AT lianyongxue onseparablegrouprings
first_indexed 2023-05-20T17:45:27Z
last_indexed 2023-05-20T17:45:27Z
_version_ 1796154014585323520