On algebraic graph theory and non-bijective multivariate maps in cryptography
Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n=2,3,… and composite m. The map Fn is injective on Ωn={x|x₁+x₂+…xn ∈ Zm∗} and solution of the equation Fn(x)=b,x∈Ωn can be reduced to the solution of equation zr=α, z∈Zm∗, (r,ϕ(m))=1. The ``hidden RSA cryptos...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154900 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On algebraic graph theory and non-bijective multivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 152-170. — Бібліогр.: 33 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n=2,3,… and composite m. The map Fn is injective on Ωn={x|x₁+x₂+…xn ∈ Zm∗} and solution of the equation Fn(x)=b,x∈Ωn can be reduced to the solution of equation zr=α, z∈Zm∗, (r,ϕ(m))=1. The ``hidden RSA cryptosystem'' is proposed.
Similar construction is suggested for the case Ωn=Zm∗ⁿ. |
---|