Towards the rank-one singular perturbations theory of self-adjoint operators

The perturbation theory is developed in the case when an arbitrary positive self-adjoint operator is perturbed by the projector on a generalized vector. Similar to the well-known problem −Δ+λδ MS we obtain in general situation explicit representations for singularly perturbed operators their resolve...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1991
Автор: Koshmanenko, Y.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1991
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154929
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Towards the rank-one singular perturbations theory of self-adjoint operators / Y.D. Koshmanenko // Український математичний журнал. — 1991. — Т. 43, № 11. — С. 1559–1566. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154929
record_format dspace
spelling irk-123456789-1549292019-06-17T01:31:16Z Towards the rank-one singular perturbations theory of self-adjoint operators Koshmanenko, Y.D. Статті The perturbation theory is developed in the case when an arbitrary positive self-adjoint operator is perturbed by the projector on a generalized vector. Similar to the well-known problem −Δ+λδ MS we obtain in general situation explicit representations for singularly perturbed operators their resolvents find the point spectrum and an explicit form of the corresponding eigenvectors. Our approach differs from usual ones and based on the self-adjoint extensions theory of semibounded operators. 1991 Article Towards the rank-one singular perturbations theory of self-adjoint operators / Y.D. Koshmanenko // Український математичний журнал. — 1991. — Т. 43, № 11. — С. 1559–1566. — Бібліогр.: 3 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/154929 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Koshmanenko, Y.D.
Towards the rank-one singular perturbations theory of self-adjoint operators
Український математичний журнал
description The perturbation theory is developed in the case when an arbitrary positive self-adjoint operator is perturbed by the projector on a generalized vector. Similar to the well-known problem −Δ+λδ MS we obtain in general situation explicit representations for singularly perturbed operators their resolvents find the point spectrum and an explicit form of the corresponding eigenvectors. Our approach differs from usual ones and based on the self-adjoint extensions theory of semibounded operators.
format Article
author Koshmanenko, Y.D.
author_facet Koshmanenko, Y.D.
author_sort Koshmanenko, Y.D.
title Towards the rank-one singular perturbations theory of self-adjoint operators
title_short Towards the rank-one singular perturbations theory of self-adjoint operators
title_full Towards the rank-one singular perturbations theory of self-adjoint operators
title_fullStr Towards the rank-one singular perturbations theory of self-adjoint operators
title_full_unstemmed Towards the rank-one singular perturbations theory of self-adjoint operators
title_sort towards the rank-one singular perturbations theory of self-adjoint operators
publisher Інститут математики НАН України
publishDate 1991
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/154929
citation_txt Towards the rank-one singular perturbations theory of self-adjoint operators / Y.D. Koshmanenko // Український математичний журнал. — 1991. — Т. 43, № 11. — С. 1559–1566. — Бібліогр.: 3 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT koshmanenkoyd towardstherankonesingularperturbationstheoryofselfadjointoperators
first_indexed 2023-05-20T17:45:28Z
last_indexed 2023-05-20T17:45:28Z
_version_ 1796154020714250240