Минимально неметризуемые группы
Некомпактная локально компактная абелева группа называется минимально неметризуемой, если все ее фактор-группы по некомпактным замкнутым подгрупам метризуемы но сама группа неметризуема. Доказано, что существование минимально неметризуемых групп не зависит от системы аксиом Цермело — Френкеля, обычн...
Збережено в:
Дата: | 1991 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1991
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155000 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Минимально неметризуемые группы / Е.Г. Зеленюк, А.Г. Пискунов // Український математичний журнал. — 1991. — Т. 43, № 7-8. — С. 1111–1114. — Бібліогр.: 2 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Некомпактная локально компактная абелева группа называется минимально неметризуемой, если все ее фактор-группы по некомпактным замкнутым подгрупам метризуемы но сама группа неметризуема. Доказано, что существование минимально неметризуемых групп не зависит от системы аксиом Цермело — Френкеля, обычных аксиом теории множеств. Тем чамым показано, что вопрос В. М. Полецких об описании локально-компактных абелевых групп, все не 0-компактные замкнутые подгруппы которых открыты, неразрешим «наивно». |
---|