Constructing R-sequencings and terraces for groups of even order
The problem of finding R-sequencings for abelian groups of even orders has been reduced to that of finding R*-sequencings for abelian groups of odd orders except in the case when the Sylow 2-subgroup is a non-cyclic non-elementary-abelian group of order 8. We partially address this exception, includ...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155145 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Constructing R-sequencings and terraces for groups of even order / M. Ollis // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 297-316. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The problem of finding R-sequencings for abelian groups of even orders has been reduced to that of finding R*-sequencings for abelian groups of odd orders except in the case when the Sylow 2-subgroup is a non-cyclic non-elementary-abelian group of order 8. We partially address this exception, including all instances when the group has order 8t for t congruent to 1, 2, 3 or 4 (mod7). As much is known about which odd-order abelian groups are R*-sequenceable, we have constructions of R-sequencings for many new families of abelian groups. The construction is generalisable in several directions, leading to a wide array of new R-sequenceable and terraceable non-abelian groups of even order. |
---|