Cyclic left and torsion-theoretic spectra of modules and their relations

In this paper, strongly-prime submodules of a cyclic module are considered and their main properties are given. On this basis, a concept of a cyclic spectrum of a module is introduced. This spectrum is a generalization of the Rosenberg spectrum of a noncommutative ring. In addition, some natural pro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Maloid-Glebova, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155149
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Cyclic left and torsion-theoretic spectra of modules and their relations / M. Maloid-Glebova // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 286-296. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155149
record_format dspace
spelling irk-123456789-1551492019-06-17T01:27:18Z Cyclic left and torsion-theoretic spectra of modules and their relations Maloid-Glebova, M. In this paper, strongly-prime submodules of a cyclic module are considered and their main properties are given. On this basis, a concept of a cyclic spectrum of a module is introduced. This spectrum is a generalization of the Rosenberg spectrum of a noncommutative ring. In addition, some natural properties of this spectrum are investigated, in particular, its functoriality is proved. 2015 Article Cyclic left and torsion-theoretic spectra of modules and their relations / M. Maloid-Glebova // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 286-296. — Бібліогр.: 9 назв. — англ. 1726-3255 http://dspace.nbuv.gov.ua/handle/123456789/155149 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, strongly-prime submodules of a cyclic module are considered and their main properties are given. On this basis, a concept of a cyclic spectrum of a module is introduced. This spectrum is a generalization of the Rosenberg spectrum of a noncommutative ring. In addition, some natural properties of this spectrum are investigated, in particular, its functoriality is proved.
format Article
author Maloid-Glebova, M.
spellingShingle Maloid-Glebova, M.
Cyclic left and torsion-theoretic spectra of modules and their relations
Algebra and Discrete Mathematics
author_facet Maloid-Glebova, M.
author_sort Maloid-Glebova, M.
title Cyclic left and torsion-theoretic spectra of modules and their relations
title_short Cyclic left and torsion-theoretic spectra of modules and their relations
title_full Cyclic left and torsion-theoretic spectra of modules and their relations
title_fullStr Cyclic left and torsion-theoretic spectra of modules and their relations
title_full_unstemmed Cyclic left and torsion-theoretic spectra of modules and their relations
title_sort cyclic left and torsion-theoretic spectra of modules and their relations
publisher Інститут прикладної математики і механіки НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/155149
citation_txt Cyclic left and torsion-theoretic spectra of modules and their relations / M. Maloid-Glebova // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 286-296. — Бібліогр.: 9 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT maloidglebovam cyclicleftandtorsiontheoreticspectraofmodulesandtheirrelations
first_indexed 2023-05-20T17:46:10Z
last_indexed 2023-05-20T17:46:10Z
_version_ 1796154046146412544