On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups
For any non-negative integers man dn we define the class of strongly almost m-ω₁-pʷ⁺ⁿ-projective groups which properly encompasses the classes of strongly m-ω₁-pω⁺ⁿ-projective groups and strongly almost ω₁-pʷ⁺ⁿ-projective groups, defined bythe author in Demonstr. Math. (2014) and Hacettepe J. Math....
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155166 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups-projective abelian p-groups / P. Danchev // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 182-202. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155166 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1551662019-09-02T16:43:27Z On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups Danchev, P. For any non-negative integers man dn we define the class of strongly almost m-ω₁-pʷ⁺ⁿ-projective groups which properly encompasses the classes of strongly m-ω₁-pω⁺ⁿ-projective groups and strongly almost ω₁-pʷ⁺ⁿ-projective groups, defined bythe author in Demonstr. Math. (2014) and Hacettepe J. Math. Stat.(2015), respectively. Certain results about this new group class are proved as well as it is shown that it shares many analogous basic properties as those of the aforementioned two group classes. 2015 Article On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups-projective abelian p-groups / P. Danchev // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 182-202. — Бібліогр.: 12 назв. — англ. 1726-3255 2010 MSC:20K10. http://dspace.nbuv.gov.ua/handle/123456789/155166 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For any non-negative integers man dn we define the class of strongly almost m-ω₁-pʷ⁺ⁿ-projective groups which properly encompasses the classes of strongly m-ω₁-pω⁺ⁿ-projective groups and strongly almost ω₁-pʷ⁺ⁿ-projective groups, defined bythe author in Demonstr. Math. (2014) and Hacettepe J. Math. Stat.(2015), respectively. Certain results about this new group class are proved as well as it is shown that it shares many analogous basic properties as those of the aforementioned two group classes. |
format |
Article |
author |
Danchev, P. |
spellingShingle |
Danchev, P. On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups Algebra and Discrete Mathematics |
author_facet |
Danchev, P. |
author_sort |
Danchev, P. |
title |
On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups |
title_short |
On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups |
title_full |
On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups |
title_fullStr |
On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups |
title_full_unstemmed |
On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups |
title_sort |
on strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155166 |
citation_txt |
On strongly almost m-ω₁-pʷ⁺ⁿ-projective abelian p-groups-projective abelian p-groups / P. Danchev // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 182-202. — Бібліогр.: 12 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT danchevp onstronglyalmostmō1pwnprojectiveabelianpgroups |
first_indexed |
2023-05-20T17:46:12Z |
last_indexed |
2023-05-20T17:46:12Z |
_version_ |
1796154047201280000 |