A morphic ring of neat range one
We show that a commutative ring R has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring R has a neat range one if and only if for any elements a,b ∈ R such that aR=bR there exist neat elements s,t∈R such th...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155168 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A morphic ring of neat range one / O. Pihura, B. Zabavsky // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 325-329. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155168 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1551682019-06-17T01:27:25Z A morphic ring of neat range one Pihura, O. Zabavsky, B. We show that a commutative ring R has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring R has a neat range one if and only if for any elements a,b ∈ R such that aR=bR there exist neat elements s,t∈R such that bs=c, ct=b. Examples of morphic rings of neat range one are given. 2015 Article A morphic ring of neat range one / O. Pihura, B. Zabavsky // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 325-329. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:13F99. http://dspace.nbuv.gov.ua/handle/123456789/155168 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that a commutative ring R has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring R has a neat range one if and only if for any elements a,b ∈ R such that aR=bR there exist neat elements s,t∈R such that bs=c, ct=b. Examples of morphic rings of neat range one are given. |
format |
Article |
author |
Pihura, O. Zabavsky, B. |
spellingShingle |
Pihura, O. Zabavsky, B. A morphic ring of neat range one Algebra and Discrete Mathematics |
author_facet |
Pihura, O. Zabavsky, B. |
author_sort |
Pihura, O. |
title |
A morphic ring of neat range one |
title_short |
A morphic ring of neat range one |
title_full |
A morphic ring of neat range one |
title_fullStr |
A morphic ring of neat range one |
title_full_unstemmed |
A morphic ring of neat range one |
title_sort |
morphic ring of neat range one |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155168 |
citation_txt |
A morphic ring of neat range one / O. Pihura, B. Zabavsky // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 325-329. — Бібліогр.: 10 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT pihurao amorphicringofneatrangeone AT zabavskyb amorphicringofneatrangeone AT pihurao morphicringofneatrangeone AT zabavskyb morphicringofneatrangeone |
first_indexed |
2023-05-20T17:46:13Z |
last_indexed |
2023-05-20T17:46:13Z |
_version_ |
1796154047410995200 |