A morphic ring of neat range one

We show that a commutative ring R has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring R has a neat range one if and only if for any elements a,b ∈ R such that aR=bR there exist neat elements s,t∈R such th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Pihura, O., Zabavsky, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155168
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A morphic ring of neat range one / O. Pihura, B. Zabavsky // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 325-329. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155168
record_format dspace
spelling irk-123456789-1551682019-06-17T01:27:25Z A morphic ring of neat range one Pihura, O. Zabavsky, B. We show that a commutative ring R has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring R has a neat range one if and only if for any elements a,b ∈ R such that aR=bR there exist neat elements s,t∈R such that bs=c, ct=b. Examples of morphic rings of neat range one are given. 2015 Article A morphic ring of neat range one / O. Pihura, B. Zabavsky // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 325-329. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:13F99. http://dspace.nbuv.gov.ua/handle/123456789/155168 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that a commutative ring R has neat range one if and only if every unit modulo principal ideal of a ring lifts to a neat element. We also show that a commutative morphic ring R has a neat range one if and only if for any elements a,b ∈ R such that aR=bR there exist neat elements s,t∈R such that bs=c, ct=b. Examples of morphic rings of neat range one are given.
format Article
author Pihura, O.
Zabavsky, B.
spellingShingle Pihura, O.
Zabavsky, B.
A morphic ring of neat range one
Algebra and Discrete Mathematics
author_facet Pihura, O.
Zabavsky, B.
author_sort Pihura, O.
title A morphic ring of neat range one
title_short A morphic ring of neat range one
title_full A morphic ring of neat range one
title_fullStr A morphic ring of neat range one
title_full_unstemmed A morphic ring of neat range one
title_sort morphic ring of neat range one
publisher Інститут прикладної математики і механіки НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/155168
citation_txt A morphic ring of neat range one / O. Pihura, B. Zabavsky // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 2. — С. 325-329. — Бібліогр.: 10 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT pihurao amorphicringofneatrangeone
AT zabavskyb amorphicringofneatrangeone
AT pihurao morphicringofneatrangeone
AT zabavskyb morphicringofneatrangeone
first_indexed 2023-05-20T17:46:13Z
last_indexed 2023-05-20T17:46:13Z
_version_ 1796154047410995200