2025-02-23T03:54:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155203%22&qt=morelikethis&rows=5
2025-02-23T03:54:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155203%22&qt=morelikethis&rows=5
2025-02-23T03:54:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:54:01-05:00 DEBUG: Deserialized SOLR response

Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes

The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables...

Full description

Saved in:
Bibliographic Details
Main Authors: Hannusch, C., Lakatos, P.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2016
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/155203
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-155203
record_format dspace
spelling irk-123456789-1552032019-06-17T01:26:53Z Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes Hannusch, C. Lakatos, P. The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes. 2016 Article Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC:94B05, 11T71, 20C05. http://dspace.nbuv.gov.ua/handle/123456789/155203 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes.
format Article
author Hannusch, C.
Lakatos, P.
spellingShingle Hannusch, C.
Lakatos, P.
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
Algebra and Discrete Mathematics
author_facet Hannusch, C.
Lakatos, P.
author_sort Hannusch, C.
title Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_short Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_full Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_fullStr Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_full_unstemmed Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
title_sort construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
publisher Інститут прикладної математики і механіки НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/155203
citation_txt Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT hannuschc constructionofselfdualbinary22n22n12ncodes
AT lakatosp constructionofselfdualbinary22n22n12ncodes
first_indexed 2023-05-20T17:46:19Z
last_indexed 2023-05-20T17:46:19Z
_version_ 1796154052614029312