2025-02-23T03:54:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155203%22&qt=morelikethis&rows=5
2025-02-23T03:54:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155203%22&qt=morelikethis&rows=5
2025-02-23T03:54:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:54:01-05:00 DEBUG: Deserialized SOLR response
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2016
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/155203 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-155203 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1552032019-06-17T01:26:53Z Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes Hannusch, C. Lakatos, P. The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes. 2016 Article Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC:94B05, 11T71, 20C05. http://dspace.nbuv.gov.ua/handle/123456789/155203 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The binary Reed-Muller code RM(m−n,m) corresponds to the n-th power of the radical of GF(2)[G], where G is an elementary abelian group of order 2m. Self-dual RM-codes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m. The group algebra approach enables us to find a self-dual code for even m=2n in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes. |
format |
Article |
author |
Hannusch, C. Lakatos, P. |
spellingShingle |
Hannusch, C. Lakatos, P. Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes Algebra and Discrete Mathematics |
author_facet |
Hannusch, C. Lakatos, P. |
author_sort |
Hannusch, C. |
title |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes |
title_short |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes |
title_full |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes |
title_fullStr |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes |
title_full_unstemmed |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes |
title_sort |
construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155203 |
citation_txt |
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes / C. Hannusch, P. Lakatos // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 59-68. — Бібліогр.: 15 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT hannuschc constructionofselfdualbinary22n22n12ncodes AT lakatosp constructionofselfdualbinary22n22n12ncodes |
first_indexed |
2023-05-20T17:46:19Z |
last_indexed |
2023-05-20T17:46:19Z |
_version_ |
1796154052614029312 |