The groups whose cyclic subgroups are either ascendant or almost self-normalizing

The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Kurdachenko, L.A., Pypka, A.A., Semko, N.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155208
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155208
record_format dspace
spelling irk-123456789-1552082019-06-17T01:28:08Z The groups whose cyclic subgroups are either ascendant or almost self-normalizing Kurdachenko, L.A. Pypka, A.A. Semko, N.N. The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation. 2016 Article The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ. 1726-3255 2010 MSC:20E15, 20F19, 20F22, 20F50. http://dspace.nbuv.gov.ua/handle/123456789/155208 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
format Article
author Kurdachenko, L.A.
Pypka, A.A.
Semko, N.N.
spellingShingle Kurdachenko, L.A.
Pypka, A.A.
Semko, N.N.
The groups whose cyclic subgroups are either ascendant or almost self-normalizing
Algebra and Discrete Mathematics
author_facet Kurdachenko, L.A.
Pypka, A.A.
Semko, N.N.
author_sort Kurdachenko, L.A.
title The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_short The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_full The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_fullStr The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_full_unstemmed The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_sort groups whose cyclic subgroups are either ascendant or almost self-normalizing
publisher Інститут прикладної математики і механіки НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/155208
citation_txt The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kurdachenkola thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT pypkaaa thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT semkonn thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT kurdachenkola groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT pypkaaa groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT semkonn groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
first_indexed 2023-05-20T17:46:20Z
last_indexed 2023-05-20T17:46:20Z
_version_ 1796154053145657344