The groups whose cyclic subgroups are either ascendant or almost self-normalizing
The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation.
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155208 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155208 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1552082019-06-17T01:28:08Z The groups whose cyclic subgroups are either ascendant or almost self-normalizing Kurdachenko, L.A. Pypka, A.A. Semko, N.N. The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation. 2016 Article The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ. 1726-3255 2010 MSC:20E15, 20F19, 20F22, 20F50. http://dspace.nbuv.gov.ua/handle/123456789/155208 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The main result of this paper shows a description of locally finite groups, whose cyclic subgroups are either almost self-normalizing or ascendant. Also, we obtained some natural corollaries of the above situation. |
format |
Article |
author |
Kurdachenko, L.A. Pypka, A.A. Semko, N.N. |
spellingShingle |
Kurdachenko, L.A. Pypka, A.A. Semko, N.N. The groups whose cyclic subgroups are either ascendant or almost self-normalizing Algebra and Discrete Mathematics |
author_facet |
Kurdachenko, L.A. Pypka, A.A. Semko, N.N. |
author_sort |
Kurdachenko, L.A. |
title |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
title_short |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
title_full |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
title_fullStr |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
title_full_unstemmed |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing |
title_sort |
groups whose cyclic subgroups are either ascendant or almost self-normalizing |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155208 |
citation_txt |
The groups whose cyclic subgroups are either ascendant or almost self-normalizing / L.A. Kurdachenko, A.A. Pypka, N.N. Semko // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 1. — С. 111-127. — Бібліогр.: 21 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT kurdachenkola thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT pypkaaa thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT semkonn thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT kurdachenkola groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT pypkaaa groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing AT semkonn groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing |
first_indexed |
2023-05-20T17:46:20Z |
last_indexed |
2023-05-20T17:46:20Z |
_version_ |
1796154053145657344 |