Generalization of primal superideals

Let R be a commutative super-ring with unity 16= 0. A proper super ideal of R is a super ideaI of R such that I 6=R.Letφ:I(R)→I(R)∪ {∅}be any function, where I(R) denotes the set of all proper super ideals of R. A homogeneous element a∈R is φ-prime to Iifra∈I−φ(I) whereris a homogeneous element in R...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Jaber, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155239
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalization of primal superideals / A. Jaber // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 202-213. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Let R be a commutative super-ring with unity 16= 0. A proper super ideal of R is a super ideaI of R such that I 6=R.Letφ:I(R)→I(R)∪ {∅}be any function, where I(R) denotes the set of all proper super ideals of R. A homogeneous element a∈R is φ-prime to Iifra∈I−φ(I) whereris a homogeneous element in R, then r∈I. We denote byνφ(I) the set of all homogeneous elements in R that are notφ-prime to I. We define Ito beφ-primal if the set P=([(νφ(I))0+ (νφ(I))1∪ {0}] +φ(I) : ifφ6=φ∅(νφ(I))0+ (νφ(I))1: ifφ=φ∅forms a super ideal of R. For example if we takeφ∅(I) =∅(resp.φ0(I) = 0), aφ-primal superideal is a primal super ideal (resp., a weakly primal super ideal). In this paper we study several generalizations of primal super ideals of R and their properties.