Stokes-Einstein relation and excess entropy scaling law in liquid Copper

We report an ab initio study of structural and dynamic properties of liquid copper as a function of temperature. In particular, we have evaluated the temperature dependence of the self-diffusion coefficient from the velocity autocorrelation function as well the temperature dependence of the viscosit...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Jakse, N., Pasturel, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2015
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155274
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Stokes-Einstein relation and excess entropy scaling law in liquid Copper / N. Jakse, A. Pasturel // Condensed Matter Physics. — 2015. — Т. 18, № 4. — С. 43603: 1–11 . — Бібліогр.: 52 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We report an ab initio study of structural and dynamic properties of liquid copper as a function of temperature. In particular, we have evaluated the temperature dependence of the self-diffusion coefficient from the velocity autocorrelation function as well the temperature dependence of the viscosity from the transverse current correlation function. We show that LDA based results are in close agreement with experimental data for both the self-diffusion coefficient and the viscosity over the temperature range investigated. Our findings are then used to test empirical approaches like the Stokes-Einstein relation and the excess entropy scaling law widely used in the literature. We show that the Stokes-Einstein relation is valid for the liquid phase and that the excess entropy scaling law proposed by Dzugutov is legitimate only if a self-consistent method for determining the packing fraction of the hard sphere reference liquid is used within the Carnahan-Starling approach to express the excess entropy.