Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I
We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect ring A as the maximal real eigen-value of its adja...
Збережено в:
Дата: | 2002 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2002
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155280 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2002. — Vol. 1, № 1. — С. 32–63. — назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We prove that the quiver of tiled order over a discrete valuation ring is strongly connected and simply laced. With
such quiver we associate a finite ergodic Markov chain. We introduce the notion of the index in A of a right noetherian semiperfect
ring A as the maximal real eigen-value of its adjacency matrix. A
tiled order Λ is integral if in Λ is an integer. Every cyclic Gorenstein tiled order is integral. In particular, in Λ = 1 if and only if
Λ is hereditary. We give an example of a non-integral Gorenstein
tiled order. We prove that a reduced (0, 1)-order is Gorenstein if
and only if either inΛ = w(Λ) = 1, or inΛ = w(Λ) = 2, where
w(Λ) is a width of Λ. |
---|