On Cohn's embedding of an enveloping algebra into a division ring

In 1961 P. М. Cohn proved that the universal enveloping algebra of any Lie algebra over a field-can be embedded into a division ring. (The Lie algebra is not assumed to be finite dimensional.) Cohn's method is less than direct. We give a more explicit construction. These division rings have rec...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1992
Автор: Wehrfritz, B.A.F.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1992
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155304
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Cohn's embedding of an enveloping algebra into a division ring / B.A.F. Wehrfritz // Український математичний журнал. — 1992. — Т. 44, № 6. — С. 729–735. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155304
record_format dspace
spelling irk-123456789-1553042019-06-17T01:29:09Z On Cohn's embedding of an enveloping algebra into a division ring Wehrfritz, B.A.F. Статті In 1961 P. М. Cohn proved that the universal enveloping algebra of any Lie algebra over a field-can be embedded into a division ring. (The Lie algebra is not assumed to be finite dimensional.) Cohn's method is less than direct. We give a more explicit construction. These division rings have recently found uses in the theory of skew linear groups. Let F be a field, L a Lie F-algebra and U=U(L) the universal enveloping algebra of L. In [1] Cohn constructs an embedding of U into a division ring. Recently there has been interest in this specific division ring in connection with matrix groups and matrix rings [2–4]. Cohn's construction is less than direct and it seemed useful to have a very explicit description of D, at least for the benefit of group theorists. 1992 Article On Cohn's embedding of an enveloping algebra into a division ring / B.A.F. Wehrfritz // Український математичний журнал. — 1992. — Т. 44, № 6. — С. 729–735. — Бібліогр.: 5 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/155304 512.54 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Wehrfritz, B.A.F.
On Cohn's embedding of an enveloping algebra into a division ring
Український математичний журнал
description In 1961 P. М. Cohn proved that the universal enveloping algebra of any Lie algebra over a field-can be embedded into a division ring. (The Lie algebra is not assumed to be finite dimensional.) Cohn's method is less than direct. We give a more explicit construction. These division rings have recently found uses in the theory of skew linear groups.
format Article
author Wehrfritz, B.A.F.
author_facet Wehrfritz, B.A.F.
author_sort Wehrfritz, B.A.F.
title On Cohn's embedding of an enveloping algebra into a division ring
title_short On Cohn's embedding of an enveloping algebra into a division ring
title_full On Cohn's embedding of an enveloping algebra into a division ring
title_fullStr On Cohn's embedding of an enveloping algebra into a division ring
title_full_unstemmed On Cohn's embedding of an enveloping algebra into a division ring
title_sort on cohn's embedding of an enveloping algebra into a division ring
publisher Інститут математики НАН України
publishDate 1992
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/155304
citation_txt On Cohn's embedding of an enveloping algebra into a division ring / B.A.F. Wehrfritz // Український математичний журнал. — 1992. — Т. 44, № 6. — С. 729–735. — Бібліогр.: 5 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT wehrfritzbaf oncohnsembeddingofanenvelopingalgebraintoadivisionring
first_indexed 2023-05-20T17:46:34Z
last_indexed 2023-05-20T17:46:34Z
_version_ 1796154065034412032