Об оптимальных способах задания информации при решении интегральных уравнений с аналитическими ядрами
Знайдено точний порядок у логарифмічній шкалі мінімального радіусу інформації для рівнянь Фредгольма другого роду з періодичними аналітичними ядрами та вільними членами. З цього результату випливає, що інформаційна складність розв'язання рівнянь Фредгольма з аналітичними ядрами вища за порядком...
Збережено в:
Дата: | 1996 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1996
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155321 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Об оптимальных способах задания информации при решении интегральных уравнений с аналитическими ядрами / М. Азизов, С.В. Переверзев // Український математичний журнал. — 1996. — Т. 48, № 5. — С. 656–664. — Бібліогр.: 16 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Знайдено точний порядок у логарифмічній шкалі мінімального радіусу інформації для рівнянь Фредгольма другого роду з періодичними аналітичними ядрами та вільними членами. З цього результату випливає, що інформаційна складність розв'язання рівнянь Фредгольма з аналітичними ядрами вища за порядком, ніж складність наближення аналітичних функцій. Це відрізняє аналітичний випадок від випадку скінченної гладкості. |
---|