Критерий дополняемости периодической почти разрешимой подгруппы в содержащей ее группе
Доказывается, что если у периодической почти разрешимой (более широко, — периодической W₀) подгруппы H группы G каждая примарная силовская подгруппа имеет дополнение в G и при этом H не более чем счетна и множество π(H) конечно, то сама подгруппа H имеет дополнение в G....
Збережено в:
Дата: | 1992 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1992
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155450 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Критерий дополняемости периодической почти разрешимой подгруппы в содержащей ее группе / С.Н. Черников, Н.С. Черников // Український математичний журнал. — 1992. — Т. 44, № 6. — С. 822–826. — Бібліогр.: 10 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Доказывается, что если у периодической почти разрешимой (более широко, — периодической W₀) подгруппы H группы G каждая примарная силовская подгруппа имеет дополнение в G и при этом H не более чем счетна и множество π(H) конечно, то сама подгруппа H имеет дополнение в G. |
---|