Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям
Рассматривается первая начально-краевая задача для гиперболического уравнения с малым параметром при внешнем воздействии, описываемом некоторым случайным процессом, удовлетворяющим какому-либо из условий слабой зависимости. Производится усреднение коэффициентов по временной переменной. Предполагаетс...
Збережено в:
Дата: | 1992 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1992
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155473 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Усреднение в гиперболических системах, подверженных слабо зависимым случайным возмущениям / Б.В. Бондарев // Український математичний журнал. — 1992. — Т. 44, № 8. — С. 1011–1020. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Рассматривается первая начально-краевая задача для гиперболического уравнения с малым параметром при внешнем воздействии, описываемом некоторым случайным процессом, удовлетворяющим какому-либо из условий слабой зависимости. Производится усреднение коэффициентов по временной переменной. Предполагается существование единственного обобщенного решения как у исходной стохастической задачи, так и у задачи с «усредненным» уравнением, которое оказывается детерминированным. Для вероятности уклонения решения исходного уравнения от решения «усредненной» задачи установлены экспоненциальные опенки типа известных неравенстве С. Н. Бернштенна для сумм независимых случайных величин. |
---|