Автоматична неперервність, базиси і радикали в метризовних алгебрах
Доказывается автоматическая непрерывность линейного мультипликативного оператора T:X→Y, где X,Y — действительные полные метрнзуемые алгебры, причем Y полупростая. Показано, что комплексная алгебра Фрепш с безусловным ортогональным базисом (xi) (ортогональным в том смысле, что xixj=0 при i≠j) являетс...
Збережено в:
Дата: | 1992 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
1992
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155481 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Автоматична неперервність, базиси і радикали в метризовних алгебрах / А.М. Плічко // Український математичний журнал. — 1992. — Т. 44, № 8. — С. 1129–1132. — Бібліогр.: 10 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Доказывается автоматическая непрерывность линейного мультипликативного оператора T:X→Y, где X,Y — действительные полные метрнзуемые алгебры, причем Y полупростая. Показано, что комплексная алгебра Фрепш с безусловным ортогональным базисом (xi) (ортогональным в том смысле, что xixj=0 при i≠j) является коммутативной симметричной алгеброй с инволюцией. Отсюда выводится известный результат о том, что каждый мультипликативный линейный функционал на такой алгебре непрерывен. Вводится понятие ортогонального базиса Маркушевича в топологической алгебре и с его помощью показывается, что для любого замкнутого подпространства Y сепарабельного банахова пространства X на X можно ввести коммутативное умножение, радикалом которого будет Y. Доказывается одна теорема об автоматической непрерывно ти положительных функционалов. |
---|