N – real fields

A field F is n-real if −1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank (AAt ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a 3...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Feigelstock, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155693
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:N – real fields / S. Feigelstock // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 1–6. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155693
record_format dspace
spelling irk-123456789-1556932019-06-18T01:26:11Z N – real fields Feigelstock, S. A field F is n-real if −1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank (AAt ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a 3-real field F is 2-real closed, then F is a real closed field. For F a quadratic extension of the field of rational numbers, the greatest integer n such that F is n-real is determined. 2003 Article N – real fields / S. Feigelstock // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 1–6. — Бібліогр.: 8 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 12D15. http://dspace.nbuv.gov.ua/handle/123456789/155693 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A field F is n-real if −1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank (AAt ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a 3-real field F is 2-real closed, then F is a real closed field. For F a quadratic extension of the field of rational numbers, the greatest integer n such that F is n-real is determined.
format Article
author Feigelstock, S.
spellingShingle Feigelstock, S.
N – real fields
Algebra and Discrete Mathematics
author_facet Feigelstock, S.
author_sort Feigelstock, S.
title N – real fields
title_short N – real fields
title_full N – real fields
title_fullStr N – real fields
title_full_unstemmed N – real fields
title_sort n – real fields
publisher Інститут прикладної математики і механіки НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/155693
citation_txt N – real fields / S. Feigelstock // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 1–6. — Бібліогр.: 8 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT feigelstocks nrealfields
first_indexed 2023-05-20T17:46:47Z
last_indexed 2023-05-20T17:46:47Z
_version_ 1796154077126590464