N – real fields

A field F is n-real if −1 is not the sum of n squares in F. It is shown that a field F is m-real if and only if rank (AAt ) = rank (A) for every n × m matrix A with entries from F. An n-real field F is n-real closed if every proper algebraic extension of F is not n-real. It is shown that if a 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2003
1. Verfasser: Feigelstock, S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2003
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/155693
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:N – real fields / S. Feigelstock // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 1–6. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Ähnliche Einträge