On check character systems over quasigroups and loops
In this article we study check character systems that is error detecting codes, which arise by appending a check digit an to every word a₁a₂...an₋₁ : a₁a₂...an₋₁ → a₁a₂...an₋₁an with the check formula (...((a₁ · δa₂) · δ ²a₃)...) · δ ⁿ⁻²an₋₁) · δ ⁿ⁻¹an = c, where Q(·) is a quasigroup or a loop, δ is...
Збережено в:
Дата: | 2003 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2003
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155694 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On check character systems over quasigroups and loops / G.B. Belyavskaya // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 1–13. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this article we study check character systems that is error detecting codes, which arise by appending a check digit an to every word a₁a₂...an₋₁ : a₁a₂...an₋₁ → a₁a₂...an₋₁an with the check formula (...((a₁ · δa₂) · δ ²a₃)...) · δ ⁿ⁻²an₋₁) · δ ⁿ⁻¹an = c, where Q(·) is a quasigroup or a loop, δ is a permutation of Q, c ∈ Q. We consider detection sets for such errors as transpositions (ab → ba), jump transpositions (acb → bca), twin errors (aa → bb) and jump twin errors (aca → bcb) and an automorphism equivalence (a weak equivalence) for a check character systems over the same quasigroup (over the same loop). Such equivalent systems detect the same percentage (rate) of the considered error types. |
---|