2025-02-23T00:41:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155703%22&qt=morelikethis&rows=5
2025-02-23T00:41:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155703%22&qt=morelikethis&rows=5
2025-02-23T00:41:46-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:41:46-05:00 DEBUG: Deserialized SOLR response

On the separability of the restriction functor

Let G be a group, Λ = L σ∈G Λσ a strongly graded ring by G, H a subgroup of G and ΛH = L σ∈H Λσ. We give a necessary and sufficient condition for the ring Λ/ΛH to be separable, generalizing the corresponding result for the ring extension Λ/Λ1. As a consequence of this result we give a conditio...

Full description

Saved in:
Bibliographic Details
Main Authors: Theohari-Apostolidi, Th., Vavatsoulas, H.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2003
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/155703
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-155703
record_format dspace
spelling irk-123456789-1557032019-06-18T01:25:55Z On the separability of the restriction functor Theohari-Apostolidi, Th. Vavatsoulas, H. Let G be a group, Λ = L σ∈G Λσ a strongly graded ring by G, H a subgroup of G and ΛH = L σ∈H Λσ. We give a necessary and sufficient condition for the ring Λ/ΛH to be separable, generalizing the corresponding result for the ring extension Λ/Λ1. As a consequence of this result we give a condition for Λ to be a hereditary order in case Λ is a strongly graded by finite group R-order in a separable K-algebra, for R a Dedekind domain with quotient field K. 2003 Article On the separability of the restriction functor / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 95–101. — Бібліогр.: 9 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16W50, 16G30, 16H05. http://dspace.nbuv.gov.ua/handle/123456789/155703 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a group, Λ = L σ∈G Λσ a strongly graded ring by G, H a subgroup of G and ΛH = L σ∈H Λσ. We give a necessary and sufficient condition for the ring Λ/ΛH to be separable, generalizing the corresponding result for the ring extension Λ/Λ1. As a consequence of this result we give a condition for Λ to be a hereditary order in case Λ is a strongly graded by finite group R-order in a separable K-algebra, for R a Dedekind domain with quotient field K.
format Article
author Theohari-Apostolidi, Th.
Vavatsoulas, H.
spellingShingle Theohari-Apostolidi, Th.
Vavatsoulas, H.
On the separability of the restriction functor
Algebra and Discrete Mathematics
author_facet Theohari-Apostolidi, Th.
Vavatsoulas, H.
author_sort Theohari-Apostolidi, Th.
title On the separability of the restriction functor
title_short On the separability of the restriction functor
title_full On the separability of the restriction functor
title_fullStr On the separability of the restriction functor
title_full_unstemmed On the separability of the restriction functor
title_sort on the separability of the restriction functor
publisher Інститут прикладної математики і механіки НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/155703
citation_txt On the separability of the restriction functor / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 95–101. — Бібліогр.: 9 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT theohariapostolidith ontheseparabilityoftherestrictionfunctor
AT vavatsoulash ontheseparabilityoftherestrictionfunctor
first_indexed 2023-05-20T17:47:05Z
last_indexed 2023-05-20T17:47:05Z
_version_ 1796154078178312192