Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees

A representation of homogeneous symmetric groups by hierarchomorphisms of spherically homogeneous rooted trees are considered. We show that every automorphism of a homogeneous symmetric (alternating) group is locally inner and that the group of all automorphisms contains Cartesian products of arb...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Lavrenyuk, Y.V., Sushchansky, V.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155723
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees / Y.V. Lavrenyuk, V.I. Sushchansky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 33–49. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A representation of homogeneous symmetric groups by hierarchomorphisms of spherically homogeneous rooted trees are considered. We show that every automorphism of a homogeneous symmetric (alternating) group is locally inner and that the group of all automorphisms contains Cartesian products of arbitrary finite symmetric groups. The structure of orbits on the boundary of the tree where investigated for the homogeneous symmetric group and for its automorphism group. The automorphism group acts highly transitive on the boundary, and the homogeneous symmetric group acts faithfully on every its orbit. All orbits are dense, the actions of the group on different orbits are isomorphic as permutation groups.