Gyrogroups and left gyrogroups as transversals of a special kind

In this article we study gyrogroups and left gyrogroups as transversals in some suitable groups to its subgroups. These objects were introduced into consideration in a connection with an investigation of analogies between symmetries in the classical mechanics and in the relativistic one. The autho...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Kuznetsov, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155728
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Gyrogroups and left gyrogroups as transversals of a special kind / E. Kuznetsov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 53–81. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155728
record_format dspace
spelling irk-123456789-1557282019-06-19T01:27:05Z Gyrogroups and left gyrogroups as transversals of a special kind Kuznetsov, E. In this article we study gyrogroups and left gyrogroups as transversals in some suitable groups to its subgroups. These objects were introduced into consideration in a connection with an investigation of analogies between symmetries in the classical mechanics and in the relativistic one. The author introduce some new notions into consideration (for example, a weak gyrotransversal) and give a full description of left gyrogroups (and gyrogroups) in terms of transversal identities. Also he generalize a construction of a diagonal transversal and obtain a set of new examples of left gyrogroups. 2003 Article Gyrogroups and left gyrogroups as transversals of a special kind / E. Kuznetsov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 53–81. — Бібліогр.: 15 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20N05, 20N15. http://dspace.nbuv.gov.ua/handle/123456789/155728 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this article we study gyrogroups and left gyrogroups as transversals in some suitable groups to its subgroups. These objects were introduced into consideration in a connection with an investigation of analogies between symmetries in the classical mechanics and in the relativistic one. The author introduce some new notions into consideration (for example, a weak gyrotransversal) and give a full description of left gyrogroups (and gyrogroups) in terms of transversal identities. Also he generalize a construction of a diagonal transversal and obtain a set of new examples of left gyrogroups.
format Article
author Kuznetsov, E.
spellingShingle Kuznetsov, E.
Gyrogroups and left gyrogroups as transversals of a special kind
Algebra and Discrete Mathematics
author_facet Kuznetsov, E.
author_sort Kuznetsov, E.
title Gyrogroups and left gyrogroups as transversals of a special kind
title_short Gyrogroups and left gyrogroups as transversals of a special kind
title_full Gyrogroups and left gyrogroups as transversals of a special kind
title_fullStr Gyrogroups and left gyrogroups as transversals of a special kind
title_full_unstemmed Gyrogroups and left gyrogroups as transversals of a special kind
title_sort gyrogroups and left gyrogroups as transversals of a special kind
publisher Інститут прикладної математики і механіки НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/155728
citation_txt Gyrogroups and left gyrogroups as transversals of a special kind / E. Kuznetsov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 3. — С. 53–81. — Бібліогр.: 15 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT kuznetsove gyrogroupsandleftgyrogroupsastransversalsofaspecialkind
first_indexed 2023-05-20T17:47:06Z
last_indexed 2023-05-20T17:47:06Z
_version_ 1796154079442894848