The Endomorphism Monoids of (n − 3)-regular Graphs of Order n

This paper is motivated by the result of W. Li, he presents an infinite family of graphs - complements of cycles - which possess a regular monoid. We show that these regular monoids are completely regular. Furthermore, we characterize the regular, orthodox and completely regular endomorphisms of the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Gyurov, B., Knauer, U., Panma, S., Pipattanajinda, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155730
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Endomorphism Monoids of (n − 3)-regular Graphs of Order n / B. Gyurov, U. Knauer, S. Panma, N. Pipattanajinda // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 284-300. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper is motivated by the result of W. Li, he presents an infinite family of graphs - complements of cycles - which possess a regular monoid. We show that these regular monoids are completely regular. Furthermore, we characterize the regular, orthodox and completely regular endomorphisms of the join of complements of cycles, i.e. (n−3)-regular graph of order n.