2025-02-23T03:00:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155730%22&qt=morelikethis&rows=5
2025-02-23T03:00:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155730%22&qt=morelikethis&rows=5
2025-02-23T03:00:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:00:01-05:00 DEBUG: Deserialized SOLR response
The Endomorphism Monoids of (n − 3)-regular Graphs of Order n
This paper is motivated by the result of W. Li, he presents an infinite family of graphs - complements of cycles - which possess a regular monoid. We show that these regular monoids are completely regular. Furthermore, we characterize the regular, orthodox and completely regular endomorphisms of the...
Saved in:
Main Authors: | Gyurov, B., Knauer, U., Panma, S., Pipattanajinda, N. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2016
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/155730 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T03:00:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155730%22&qt=morelikethis
2025-02-23T03:00:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155730%22&qt=morelikethis
2025-02-23T03:00:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:00:01-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
The endomorphism monoids of (n − 3)-regular graphs of order n
by: N. Pipattanajinda, et al.
Published: (2016) -
The Endomorphism Monoids of (n − 3)-regular Graphs of Order n
by: Gyurov, Boyko, et al.
Published: (2016) -
The endomorphisms monoids of graphs of order n with a minimum degree n − 3
by: Pipattanajinda, N., et al.
Published: (2014) -
The endomorphisms monoids of graphs of order n with a minimum degree n − 3
by: N. Pipattanajinda, et al.
Published: (2014) -
A formula for the number of weak endomorphisms on paths
by: Knauer, U., et al.
Published: (2018)