On n-stars in colorings and orientations of graphs
An n-star S in a graph G is the union of geodesic intervals I1,…,Ik with common end O such that the subgraphs I1∖{O},…,Ik∖{O} are pairwise disjoint and l(I1)+…+l(Ik)=n. If the edges of G are oriented, S is directed if each ray Ii is directed. For natural number n,r, we construct a graph G of diam(G)...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155731 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On n-stars in colorings and orientations of graphs / I.V. Protasov // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 301-303. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | An n-star S in a graph G is the union of geodesic intervals I1,…,Ik with common end O such that the subgraphs I1∖{O},…,Ik∖{O} are pairwise disjoint and l(I1)+…+l(Ik)=n. If the edges of G are oriented, S is directed if each ray Ii is directed. For natural number n,r, we construct a graph G of diam(G)=n such that, for any r-coloring and orientation of E(G), there exists a directed n-star with monochrome rays of pairwise distinct colors. |
---|