On n-stars in colorings and orientations of graphs

An n-star S in a graph G is the union of geodesic intervals I1,…,Ik with common end O such that the subgraphs I1∖{O},…,Ik∖{O} are pairwise disjoint and l(I1)+…+l(Ik)=n. If the edges of G are oriented, S is directed if each ray Ii is directed. For natural number n,r, we construct a graph G of diam(G)...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Protasov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155731
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On n-stars in colorings and orientations of graphs / I.V. Protasov // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 301-303. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:An n-star S in a graph G is the union of geodesic intervals I1,…,Ik with common end O such that the subgraphs I1∖{O},…,Ik∖{O} are pairwise disjoint and l(I1)+…+l(Ik)=n. If the edges of G are oriented, S is directed if each ray Ii is directed. For natural number n,r, we construct a graph G of diam(G)=n such that, for any r-coloring and orientation of E(G), there exists a directed n-star with monochrome rays of pairwise distinct colors.