Rad-supplements in injective modules
We introduce and study the notion of Rad-s-injective modules (i.e. modules which are Rad-supplements in the irinjective hulls). We compare this notion with another generalization of injective modules. We show that the class of Rad-s-injective modules is closed under finite direct sums. We characteri...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155737 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Rad-supplements in injective modules / E. Buyukasik, R. Tribak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 171-183. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155737 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1557372019-06-18T01:25:52Z Rad-supplements in injective modules Buyukasik, E. Tribak, R. We introduce and study the notion of Rad-s-injective modules (i.e. modules which are Rad-supplements in the irinjective hulls). We compare this notion with another generalization of injective modules. We show that the class of Rad-s-injective modules is closed under finite direct sums. We characterize Rad-s-injective modules over several type of rings, including semilocalrings, left hereditary rings and left Harada rings. 2016 Article Rad-supplements in injective modules / E. Buyukasik, R. Tribak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 171-183. — Бібліогр.: 14 назв. — англ. 1726-3255 2010 MSC:16D50, 16D99, 16L30, 16L60. http://dspace.nbuv.gov.ua/handle/123456789/155737 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce and study the notion of Rad-s-injective modules (i.e. modules which are Rad-supplements in the irinjective hulls). We compare this notion with another generalization of injective modules. We show that the class of Rad-s-injective modules is closed under finite direct sums. We characterize Rad-s-injective modules over several type of rings, including semilocalrings, left hereditary rings and left Harada rings. |
format |
Article |
author |
Buyukasik, E. Tribak, R. |
spellingShingle |
Buyukasik, E. Tribak, R. Rad-supplements in injective modules Algebra and Discrete Mathematics |
author_facet |
Buyukasik, E. Tribak, R. |
author_sort |
Buyukasik, E. |
title |
Rad-supplements in injective modules |
title_short |
Rad-supplements in injective modules |
title_full |
Rad-supplements in injective modules |
title_fullStr |
Rad-supplements in injective modules |
title_full_unstemmed |
Rad-supplements in injective modules |
title_sort |
rad-supplements in injective modules |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155737 |
citation_txt |
Rad-supplements in injective modules / E. Buyukasik, R. Tribak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 171-183. — Бібліогр.: 14 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT buyukasike radsupplementsininjectivemodules AT tribakr radsupplementsininjectivemodules |
first_indexed |
2023-05-20T17:47:37Z |
last_indexed |
2023-05-20T17:47:37Z |
_version_ |
1796154098410586112 |