Rad-supplements in injective modules

We introduce and study the notion of Rad-s-injective modules (i.e. modules which are Rad-supplements in the irinjective hulls). We compare this notion with another generalization of injective modules. We show that the class of Rad-s-injective modules is closed under finite direct sums. We characteri...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Buyukasik, E., Tribak, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155737
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Rad-supplements in injective modules / E. Buyukasik, R. Tribak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 171-183. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155737
record_format dspace
spelling irk-123456789-1557372019-06-18T01:25:52Z Rad-supplements in injective modules Buyukasik, E. Tribak, R. We introduce and study the notion of Rad-s-injective modules (i.e. modules which are Rad-supplements in the irinjective hulls). We compare this notion with another generalization of injective modules. We show that the class of Rad-s-injective modules is closed under finite direct sums. We characterize Rad-s-injective modules over several type of rings, including semilocalrings, left hereditary rings and left Harada rings. 2016 Article Rad-supplements in injective modules / E. Buyukasik, R. Tribak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 171-183. — Бібліогр.: 14 назв. — англ. 1726-3255 2010 MSC:16D50, 16D99, 16L30, 16L60. http://dspace.nbuv.gov.ua/handle/123456789/155737 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce and study the notion of Rad-s-injective modules (i.e. modules which are Rad-supplements in the irinjective hulls). We compare this notion with another generalization of injective modules. We show that the class of Rad-s-injective modules is closed under finite direct sums. We characterize Rad-s-injective modules over several type of rings, including semilocalrings, left hereditary rings and left Harada rings.
format Article
author Buyukasik, E.
Tribak, R.
spellingShingle Buyukasik, E.
Tribak, R.
Rad-supplements in injective modules
Algebra and Discrete Mathematics
author_facet Buyukasik, E.
Tribak, R.
author_sort Buyukasik, E.
title Rad-supplements in injective modules
title_short Rad-supplements in injective modules
title_full Rad-supplements in injective modules
title_fullStr Rad-supplements in injective modules
title_full_unstemmed Rad-supplements in injective modules
title_sort rad-supplements in injective modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/155737
citation_txt Rad-supplements in injective modules / E. Buyukasik, R. Tribak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 171-183. — Бібліогр.: 14 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT buyukasike radsupplementsininjectivemodules
AT tribakr radsupplementsininjectivemodules
first_indexed 2023-05-20T17:47:37Z
last_indexed 2023-05-20T17:47:37Z
_version_ 1796154098410586112