Indecomposable and irreducible t-monomial matrices over commutative rings
We introduce the notion of the defining sequence of a permutation indecomposable monomial matrix over a commutative ring and obtain necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence.
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155743 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Indecomposable and irreducible t-monomial matrices over commutative rings / V.M. Bondarenko, M. Bortos, R. Dinis, A. Tylyshchak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 11-20. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155743 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1557432019-06-18T01:25:21Z Indecomposable and irreducible t-monomial matrices over commutative rings Bondarenko, V.M. Bortos, M. Dinis, R. Tylyshchak, A. We introduce the notion of the defining sequence of a permutation indecomposable monomial matrix over a commutative ring and obtain necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence. 2016 Article Indecomposable and irreducible t-monomial matrices over commutative rings / V.M. Bondarenko, M. Bortos, R. Dinis, A. Tylyshchak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 11-20. — Бібліогр.: 4 назв. — англ. 1726-3255 2010 MSC:15B33, 15A30. http://dspace.nbuv.gov.ua/handle/123456789/155743 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce the notion of the defining sequence of a permutation indecomposable monomial matrix over a commutative ring and obtain necessary conditions for such matrices to be indecomposable or irreducible in terms of this sequence. |
format |
Article |
author |
Bondarenko, V.M. Bortos, M. Dinis, R. Tylyshchak, A. |
spellingShingle |
Bondarenko, V.M. Bortos, M. Dinis, R. Tylyshchak, A. Indecomposable and irreducible t-monomial matrices over commutative rings Algebra and Discrete Mathematics |
author_facet |
Bondarenko, V.M. Bortos, M. Dinis, R. Tylyshchak, A. |
author_sort |
Bondarenko, V.M. |
title |
Indecomposable and irreducible t-monomial matrices over commutative rings |
title_short |
Indecomposable and irreducible t-monomial matrices over commutative rings |
title_full |
Indecomposable and irreducible t-monomial matrices over commutative rings |
title_fullStr |
Indecomposable and irreducible t-monomial matrices over commutative rings |
title_full_unstemmed |
Indecomposable and irreducible t-monomial matrices over commutative rings |
title_sort |
indecomposable and irreducible t-monomial matrices over commutative rings |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155743 |
citation_txt |
Indecomposable and irreducible t-monomial matrices over commutative rings / V.M. Bondarenko, M. Bortos, R. Dinis, A. Tylyshchak // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 11-20. — Бібліогр.: 4 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bondarenkovm indecomposableandirreducibletmonomialmatricesovercommutativerings AT bortosm indecomposableandirreducibletmonomialmatricesovercommutativerings AT dinisr indecomposableandirreducibletmonomialmatricesovercommutativerings AT tylyshchaka indecomposableandirreducibletmonomialmatricesovercommutativerings |
first_indexed |
2023-05-20T17:47:38Z |
last_indexed |
2023-05-20T17:47:38Z |
_version_ |
1796154099040780288 |