Amply (weakly) Goldie-Rad-supplemented modules

Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Mutlu, F.T.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155747
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155747
record_format dspace
spelling irk-123456789-1557472019-06-18T01:25:36Z Amply (weakly) Goldie-Rad-supplemented modules Mutlu, F.T. Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if M is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian. 2016 Article Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ. 1726-3255 2010 MSC:16D10, 16D40, 16D70. http://dspace.nbuv.gov.ua/handle/123456789/155747 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if M is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian.
format Article
author Mutlu, F.T.
spellingShingle Mutlu, F.T.
Amply (weakly) Goldie-Rad-supplemented modules
Algebra and Discrete Mathematics
author_facet Mutlu, F.T.
author_sort Mutlu, F.T.
title Amply (weakly) Goldie-Rad-supplemented modules
title_short Amply (weakly) Goldie-Rad-supplemented modules
title_full Amply (weakly) Goldie-Rad-supplemented modules
title_fullStr Amply (weakly) Goldie-Rad-supplemented modules
title_full_unstemmed Amply (weakly) Goldie-Rad-supplemented modules
title_sort amply (weakly) goldie-rad-supplemented modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/155747
citation_txt Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT mutluft amplyweaklygoldieradsupplementedmodules
first_indexed 2023-05-20T17:47:39Z
last_indexed 2023-05-20T17:47:39Z
_version_ 1796154099461259264