Amply (weakly) Goldie-Rad-supplemented modules
Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements...
Збережено в:
Дата: | 2016 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155747 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155747 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1557472019-06-18T01:25:36Z Amply (weakly) Goldie-Rad-supplemented modules Mutlu, F.T. Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if M is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian. 2016 Article Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ. 1726-3255 2010 MSC:16D10, 16D40, 16D70. http://dspace.nbuv.gov.ua/handle/123456789/155747 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if M is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian. |
format |
Article |
author |
Mutlu, F.T. |
spellingShingle |
Mutlu, F.T. Amply (weakly) Goldie-Rad-supplemented modules Algebra and Discrete Mathematics |
author_facet |
Mutlu, F.T. |
author_sort |
Mutlu, F.T. |
title |
Amply (weakly) Goldie-Rad-supplemented modules |
title_short |
Amply (weakly) Goldie-Rad-supplemented modules |
title_full |
Amply (weakly) Goldie-Rad-supplemented modules |
title_fullStr |
Amply (weakly) Goldie-Rad-supplemented modules |
title_full_unstemmed |
Amply (weakly) Goldie-Rad-supplemented modules |
title_sort |
amply (weakly) goldie-rad-supplemented modules |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155747 |
citation_txt |
Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT mutluft amplyweaklygoldieradsupplementedmodules |
first_indexed |
2023-05-20T17:47:39Z |
last_indexed |
2023-05-20T17:47:39Z |
_version_ |
1796154099461259264 |