Transformations of (0,1] preserving tails of Δμ-representation of numbers
In the paper, classes of continuous strictly increasing functions preserving ``tails'' of Δμ-representation of numbers are constructed. Using these functions we construct also continuous transformations of (0,1]. We prove that the set of all such transformations is infinite and forms non-c...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155748 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Transformations of (0,1] preserving tails of Δμ-representation of numbers / T.M. Isaieva, M.V. Pratsiovytyi // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 102-115. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155748 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1557482019-06-18T01:25:37Z Transformations of (0,1] preserving tails of Δμ-representation of numbers Isaieva, T.M. Pratsiovytyi, M.V. In the paper, classes of continuous strictly increasing functions preserving ``tails'' of Δμ-representation of numbers are constructed. Using these functions we construct also continuous transformations of (0,1]. We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation. 2016 Article Transformations of (0,1] preserving tails of Δμ-representation of numbers / T.M. Isaieva, M.V. Pratsiovytyi // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 102-115. — Бібліогр.: 25 назв. — англ. 1726-3255 2010 MSC:11H71, 26A46, 93B17. http://dspace.nbuv.gov.ua/handle/123456789/155748 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In the paper, classes of continuous strictly increasing functions preserving ``tails'' of Δμ-representation of numbers are constructed. Using these functions we construct also continuous transformations of (0,1]. We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation. |
format |
Article |
author |
Isaieva, T.M. Pratsiovytyi, M.V. |
spellingShingle |
Isaieva, T.M. Pratsiovytyi, M.V. Transformations of (0,1] preserving tails of Δμ-representation of numbers Algebra and Discrete Mathematics |
author_facet |
Isaieva, T.M. Pratsiovytyi, M.V. |
author_sort |
Isaieva, T.M. |
title |
Transformations of (0,1] preserving tails of Δμ-representation of numbers |
title_short |
Transformations of (0,1] preserving tails of Δμ-representation of numbers |
title_full |
Transformations of (0,1] preserving tails of Δμ-representation of numbers |
title_fullStr |
Transformations of (0,1] preserving tails of Δμ-representation of numbers |
title_full_unstemmed |
Transformations of (0,1] preserving tails of Δμ-representation of numbers |
title_sort |
transformations of (0,1] preserving tails of δμ-representation of numbers |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155748 |
citation_txt |
Transformations of (0,1] preserving tails of Δμ-representation of numbers / T.M. Isaieva, M.V. Pratsiovytyi // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 102-115. — Бібліогр.: 25 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT isaievatm transformationsof01preservingtailsofdmrepresentationofnumbers AT pratsiovytyimv transformationsof01preservingtailsofdmrepresentationofnumbers |
first_indexed |
2023-05-20T17:47:39Z |
last_indexed |
2023-05-20T17:47:39Z |
_version_ |
1796154099567165440 |