2025-02-23T00:34:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155776%22&qt=morelikethis&rows=5
2025-02-23T00:34:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155776%22&qt=morelikethis&rows=5
2025-02-23T00:34:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:34:09-05:00 DEBUG: Deserialized SOLR response

Cavity-ligand binding in a simple two-dimensional water model

By means of Monte Carlo computer simulations in the isothermal-isobaric ensemble, we investigated the interaction of a hydrophobic ligand with the hydrophobic surfaces of various curvatures (planar, convex and concave). A simple two-dimensional model of water, hydrophobic ligand and surface was used...

Full description

Saved in:
Bibliographic Details
Main Authors: Mazovec, G., Lukšič, M., Hribar-Lee, B.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2016
Series:Condensed Matter Physics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/155776
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By means of Monte Carlo computer simulations in the isothermal-isobaric ensemble, we investigated the interaction of a hydrophobic ligand with the hydrophobic surfaces of various curvatures (planar, convex and concave). A simple two-dimensional model of water, hydrophobic ligand and surface was used. Hydration/dehidration phenomena concerning water molecules confined close to the molecular surface were investigated. A notable dewetting of the hydrophobic surfaces was observed together with the reorientation of the water molecules close to the surface. The hydrogen bonding network was formed to accommodate cavities next to the surfaces as well as beyond the first hydration shell. The effects were most strongly pronounced in the case of concave surfaces having large curvature. This simplified model can be further used to evaluate the thermodynamic fingerprint of the docking of hydrophobic ligands.