2025-02-23T03:28:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155790%22&qt=morelikethis&rows=5
2025-02-23T03:28:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155790%22&qt=morelikethis&rows=5
2025-02-23T03:28:28-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:28:28-05:00 DEBUG: Deserialized SOLR response

Gyroidal nanoporous carbons - Adsorption and separation properties explored using computer simulations

Adsorption and separation properties of gyroidal nanoporous carbons (GNCs) - a new class of exotic nanocarbon materials are studied for the first time using hyper parallel tempering Monte Carlo Simulation technique. Porous structure of GNC models is evaluated by the method proposed by Bhattacharya a...

Full description

Saved in:
Bibliographic Details
Main Authors: Furmaniak, S., Gauden, P.A., Terzyk, A.P., Kowalczyk, P.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2016
Series:Condensed Matter Physics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/155790
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adsorption and separation properties of gyroidal nanoporous carbons (GNCs) - a new class of exotic nanocarbon materials are studied for the first time using hyper parallel tempering Monte Carlo Simulation technique. Porous structure of GNC models is evaluated by the method proposed by Bhattacharya and Gubbins. All the studied structures are strictly microporous. Next, mechanisms of Ar adsorption are described basing on the analysis of adsorption isotherms, enthalpy plots, the values of Henry’s constants, αs and adsorption potential distribution plots. It is concluded that below pore diameters ca. 0.8 nm, primary micropore filling process dominates. For structures possessing larger micropores, primary and secondary micropore filling mechanism is observed. Finally, the separation properties of GNC toward CO₂/CH₄, CO₂/N₂, and CH₄/N₂ mixtures are discussed and compared with separation properties of Virtual Porous Carbon models. GNCs may be considered as potential adsorbents for gas mixture separation, having separation efficiency similar or even higher than activated carbons with similar diameters of pores.