An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory

We present here a formally exact model for electronic transitions between an initial (donor) and final (acceptor) states linked by an intermediate (bridge) state. Our model incorporates a common set of vibrational modes that are coupled to the donor, bridge, and acceptor states and serves as a dissi...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Інститут фізики конденсованих систем НАН України
Дата:2016
Автор: Bittner, E.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2016
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155804
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Цитувати:An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory / E.R. Bittner // Condensed Matter Physics. — 2016. — Т. 19, № 2. — С. 23803: 1–9. — Бібліогр.: 39 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155804
record_format dspace
spelling irk-123456789-1558042019-06-18T01:29:28Z An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory Bittner, E.R. We present here a formally exact model for electronic transitions between an initial (donor) and final (acceptor) states linked by an intermediate (bridge) state. Our model incorporates a common set of vibrational modes that are coupled to the donor, bridge, and acceptor states and serves as a dissipative bath that destroys quantum coherence between the donor and acceptor. Taking the memory time of the bath as a free parameter, we calculate transition rates for a heuristic 3-state/2 mode Hamiltonian system parameterized to represent the energetics and couplings in a typical organic photovoltaic system. Our results indicate that if the memory time of the bath is of the order of 10-100 fs, a two-state kinetic (i.e., incoherent hopping) model will grossly underestimate overall transition rate. Представлено формально точну модель електронних переходiв мiж початковим (донор) та кiнцевим (акцептор) станами, якi зв’язанi промiжним (мiсток) станом. Наша модель включає спiльний набiр коливних мод, якi взаємодiють з донорним, мiстковим та акцепторним станами, та служить як дисипативний термостат, що порушує квантову когерентнiсть мiж донором i акцептором. Беручи час пам’ятi термостата як вiльний параметр, ми розраховуємо iнтенсивнiсть переходiв для евристичного 3-стани/2 модового гамiльтонiана системи, параметризованого для опису енергетики та взаємодiй в типово органiчнiй фотовольтаїчнiй системi. Нашi результати вказують, що якщо час пам’ятi термостату є порядку 10–100 пс, дво-станова кiнетична (тобто з некогерентним перескоком) модель значно недооцiюнює загальну iнтенсивнiсть переходiв. 2016 Article An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory / E.R. Bittner // Condensed Matter Physics. — 2016. — Т. 19, № 2. — С. 23803: 1–9. — Бібліогр.: 39 назв. — англ. 1607-324X DOI:10.5488/CMP.19.23803 arXiv:1511.09359 PACS: 87.15.ht, 82.20.Xr, 82.39.Jn http://dspace.nbuv.gov.ua/handle/123456789/155804 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present here a formally exact model for electronic transitions between an initial (donor) and final (acceptor) states linked by an intermediate (bridge) state. Our model incorporates a common set of vibrational modes that are coupled to the donor, bridge, and acceptor states and serves as a dissipative bath that destroys quantum coherence between the donor and acceptor. Taking the memory time of the bath as a free parameter, we calculate transition rates for a heuristic 3-state/2 mode Hamiltonian system parameterized to represent the energetics and couplings in a typical organic photovoltaic system. Our results indicate that if the memory time of the bath is of the order of 10-100 fs, a two-state kinetic (i.e., incoherent hopping) model will grossly underestimate overall transition rate.
format Article
author Bittner, E.R.
spellingShingle Bittner, E.R.
An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory
Condensed Matter Physics
author_facet Bittner, E.R.
author_sort Bittner, E.R.
title An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory
title_short An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory
title_full An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory
title_fullStr An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory
title_full_unstemmed An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory
title_sort effective hamiltonian approach for donor-bridge-acceptor electronic transitions: exploring the role of bath memory
publisher Інститут фізики конденсованих систем НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/155804
citation_txt An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory / E.R. Bittner // Condensed Matter Physics. — 2016. — Т. 19, № 2. — С. 23803: 1–9. — Бібліогр.: 39 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT bittnerer aneffectivehamiltonianapproachfordonorbridgeacceptorelectronictransitionsexploringtheroleofbathmemory
AT bittnerer effectivehamiltonianapproachfordonorbridgeacceptorelectronictransitionsexploringtheroleofbathmemory
first_indexed 2023-05-20T17:48:05Z
last_indexed 2023-05-20T17:48:05Z
_version_ 1796154124077629440