2025-02-23T16:04:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155911%22&qt=morelikethis&rows=5
2025-02-23T16:04:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-155911%22&qt=morelikethis&rows=5
2025-02-23T16:04:22-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T16:04:22-05:00 DEBUG: Deserialized SOLR response

A new way to construct 1-singular Gelfand-Tsetlin modules

We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We...

Full description

Saved in:
Bibliographic Details
Main Author: Zadunaisky, P.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2017
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/155911
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-155911
record_format dspace
spelling irk-123456789-1559112019-06-18T01:28:46Z A new way to construct 1-singular Gelfand-Tsetlin modules Zadunaisky, P. We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We then show that this family can be extended to a flat family over a variety including generic points and 1-singular points for a fixed singular pair of entries. The 1-singular modules are precisely the fibers over these points 2017 Article A new way to construct 1-singular Gelfand-Tsetlin modules / P. Zadunaisky // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 180-193. — Бібліогр.: 20 назв. — англ. 1726-3255 2010 MSC:17B10. http://dspace.nbuv.gov.ua/handle/123456789/155911 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We then show that this family can be extended to a flat family over a variety including generic points and 1-singular points for a fixed singular pair of entries. The 1-singular modules are precisely the fibers over these points
format Article
author Zadunaisky, P.
spellingShingle Zadunaisky, P.
A new way to construct 1-singular Gelfand-Tsetlin modules
Algebra and Discrete Mathematics
author_facet Zadunaisky, P.
author_sort Zadunaisky, P.
title A new way to construct 1-singular Gelfand-Tsetlin modules
title_short A new way to construct 1-singular Gelfand-Tsetlin modules
title_full A new way to construct 1-singular Gelfand-Tsetlin modules
title_fullStr A new way to construct 1-singular Gelfand-Tsetlin modules
title_full_unstemmed A new way to construct 1-singular Gelfand-Tsetlin modules
title_sort new way to construct 1-singular gelfand-tsetlin modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/155911
citation_txt A new way to construct 1-singular Gelfand-Tsetlin modules / P. Zadunaisky // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 180-193. — Бібліогр.: 20 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zadunaiskyp anewwaytoconstruct1singulargelfandtsetlinmodules
AT zadunaiskyp newwaytoconstruct1singulargelfandtsetlinmodules
first_indexed 2023-05-20T17:48:22Z
last_indexed 2023-05-20T17:48:22Z
_version_ 1796154136680464384