A new way to construct 1-singular Gelfand-Tsetlin modules
We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155911 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A new way to construct 1-singular Gelfand-Tsetlin modules / P. Zadunaisky // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 180-193. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155911 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1559112019-06-18T01:28:46Z A new way to construct 1-singular Gelfand-Tsetlin modules Zadunaisky, P. We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We then show that this family can be extended to a flat family over a variety including generic points and 1-singular points for a fixed singular pair of entries. The 1-singular modules are precisely the fibers over these points 2017 Article A new way to construct 1-singular Gelfand-Tsetlin modules / P. Zadunaisky // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 180-193. — Бібліогр.: 20 назв. — англ. 1726-3255 2010 MSC:17B10. http://dspace.nbuv.gov.ua/handle/123456789/155911 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We then show that this family can be extended to a flat family over a variety including generic points and 1-singular points for a fixed singular pair of entries. The 1-singular modules are precisely the fibers over these points |
format |
Article |
author |
Zadunaisky, P. |
spellingShingle |
Zadunaisky, P. A new way to construct 1-singular Gelfand-Tsetlin modules Algebra and Discrete Mathematics |
author_facet |
Zadunaisky, P. |
author_sort |
Zadunaisky, P. |
title |
A new way to construct 1-singular Gelfand-Tsetlin modules |
title_short |
A new way to construct 1-singular Gelfand-Tsetlin modules |
title_full |
A new way to construct 1-singular Gelfand-Tsetlin modules |
title_fullStr |
A new way to construct 1-singular Gelfand-Tsetlin modules |
title_full_unstemmed |
A new way to construct 1-singular Gelfand-Tsetlin modules |
title_sort |
new way to construct 1-singular gelfand-tsetlin modules |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155911 |
citation_txt |
A new way to construct 1-singular Gelfand-Tsetlin modules / P. Zadunaisky // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 180-193. — Бібліогр.: 20 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT zadunaiskyp anewwaytoconstruct1singulargelfandtsetlinmodules AT zadunaiskyp newwaytoconstruct1singulargelfandtsetlinmodules |
first_indexed |
2023-05-20T17:48:22Z |
last_indexed |
2023-05-20T17:48:22Z |
_version_ |
1796154136680464384 |