On representations of the group of order two over local factorial rings in the weakly modular case
We study representations of the group of order 2 over local factorial rings of characteristic not 2 with residue field of characteristic 2. The main results are related to a sufficient condition of wildness of groups.
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155913 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On representations of the group of order two over local factorial rings in the weakly modular case / V.M. Bondarenko, M. Stoika // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 7-15. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155913 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1559132019-06-18T01:30:06Z On representations of the group of order two over local factorial rings in the weakly modular case Bondarenko, V.M. Stoika, M. We study representations of the group of order 2 over local factorial rings of characteristic not 2 with residue field of characteristic 2. The main results are related to a sufficient condition of wildness of groups. 2017 Article On representations of the group of order two over local factorial rings in the weakly modular case / V.M. Bondarenko, M. Stoika // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 7-15. — Бібліогр.: 21 назв. — англ. 1726-3255 2010 MSC:20C15, 20C20, 16G60. http://dspace.nbuv.gov.ua/handle/123456789/155913 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study representations of the group of order 2 over local factorial rings of characteristic not 2 with residue field of characteristic 2. The main results are related to a sufficient condition of wildness of groups. |
format |
Article |
author |
Bondarenko, V.M. Stoika, M. |
spellingShingle |
Bondarenko, V.M. Stoika, M. On representations of the group of order two over local factorial rings in the weakly modular case Algebra and Discrete Mathematics |
author_facet |
Bondarenko, V.M. Stoika, M. |
author_sort |
Bondarenko, V.M. |
title |
On representations of the group of order two over local factorial rings in the weakly modular case |
title_short |
On representations of the group of order two over local factorial rings in the weakly modular case |
title_full |
On representations of the group of order two over local factorial rings in the weakly modular case |
title_fullStr |
On representations of the group of order two over local factorial rings in the weakly modular case |
title_full_unstemmed |
On representations of the group of order two over local factorial rings in the weakly modular case |
title_sort |
on representations of the group of order two over local factorial rings in the weakly modular case |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155913 |
citation_txt |
On representations of the group of order two over local factorial rings in the weakly modular case / V.M. Bondarenko, M. Stoika // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 7-15. — Бібліогр.: 21 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bondarenkovm onrepresentationsofthegroupofordertwooverlocalfactorialringsintheweaklymodularcase AT stoikam onrepresentationsofthegroupofordertwooverlocalfactorialringsintheweaklymodularcase |
first_indexed |
2023-05-20T17:48:22Z |
last_indexed |
2023-05-20T17:48:22Z |
_version_ |
1796154130591383552 |