Galois orders of symmetric differential operators

In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Futorny, V., Schwarz, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155929
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Galois orders of symmetric differential operators / V. Futorny, J. Schwarz // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 35-46. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impact on the structure theory of algebras. In particular, this abstract framework has provided a new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical and the quantum case for gln and sln in~[18] and~[21], respectively. We will give a detailed proof of the Gelfand-Kirillov Conjecture in the classical case and show that the algebra of symmetric differential operators has a structure of a Galois order.