Equivalence of Carter diagrams

We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ₁ to another Carter diagram Γ₂ we can get a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Stekolshchik, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155936
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Equivalence of Carter diagrams / R. Stekolshchik // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 138-179. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ₁ to another Carter diagram Γ₂ we can get a certain intermediate diagram Γ′ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation ρ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams.