Equivalence of Carter diagrams

We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ₁ to another Carter diagram Γ₂ we can get a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Stekolshchik, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155936
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Equivalence of Carter diagrams / R. Stekolshchik // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 138-179. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-155936
record_format dspace
spelling irk-123456789-1559362019-06-18T01:29:41Z Equivalence of Carter diagrams Stekolshchik, R. We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ₁ to another Carter diagram Γ₂ we can get a certain intermediate diagram Γ′ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation ρ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams. 2017 Article Equivalence of Carter diagrams / R. Stekolshchik // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 138-179. — Бібліогр.: 8 назв. — англ. 1726-3255 2010 MSC:20F55. http://dspace.nbuv.gov.ua/handle/123456789/155936 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ₁ to another Carter diagram Γ₂ we can get a certain intermediate diagram Γ′ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation ρ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams.
format Article
author Stekolshchik, R.
spellingShingle Stekolshchik, R.
Equivalence of Carter diagrams
Algebra and Discrete Mathematics
author_facet Stekolshchik, R.
author_sort Stekolshchik, R.
title Equivalence of Carter diagrams
title_short Equivalence of Carter diagrams
title_full Equivalence of Carter diagrams
title_fullStr Equivalence of Carter diagrams
title_full_unstemmed Equivalence of Carter diagrams
title_sort equivalence of carter diagrams
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/155936
citation_txt Equivalence of Carter diagrams / R. Stekolshchik // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 138-179. — Бібліогр.: 8 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT stekolshchikr equivalenceofcarterdiagrams
first_indexed 2023-05-20T17:48:23Z
last_indexed 2023-05-20T17:48:23Z
_version_ 1796154137322192896