Equivalence of Carter diagrams
We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ₁ to another Carter diagram Γ₂ we can get a...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155936 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Equivalence of Carter diagrams / R. Stekolshchik // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 138-179. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-155936 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1559362019-06-18T01:29:41Z Equivalence of Carter diagrams Stekolshchik, R. We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ₁ to another Carter diagram Γ₂ we can get a certain intermediate diagram Γ′ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation ρ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams. 2017 Article Equivalence of Carter diagrams / R. Stekolshchik // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 138-179. — Бібліогр.: 8 назв. — англ. 1726-3255 2010 MSC:20F55. http://dspace.nbuv.gov.ua/handle/123456789/155936 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce the equivalence relation ρ on the set of Carter diagrams and construct an explicit transformation of any Carter diagram containing l-cycles with l>4 to an equivalent Carter diagram containing only 4-cycles. Transforming one Carter diagram Γ₁ to another Carter diagram Γ₂ we can get a certain intermediate diagram Γ′ which is not necessarily a Carter diagram. Such an intermediate diagram is called a connection diagram. The relation ρ is the equivalence relation on the set of Carter diagrams and connection diagrams. The properties of connection and Carter diagrams are studied in this paper. The paper contains an alternative proof of Carter's classification of admissible diagrams. |
format |
Article |
author |
Stekolshchik, R. |
spellingShingle |
Stekolshchik, R. Equivalence of Carter diagrams Algebra and Discrete Mathematics |
author_facet |
Stekolshchik, R. |
author_sort |
Stekolshchik, R. |
title |
Equivalence of Carter diagrams |
title_short |
Equivalence of Carter diagrams |
title_full |
Equivalence of Carter diagrams |
title_fullStr |
Equivalence of Carter diagrams |
title_full_unstemmed |
Equivalence of Carter diagrams |
title_sort |
equivalence of carter diagrams |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/155936 |
citation_txt |
Equivalence of Carter diagrams / R. Stekolshchik // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 138-179. — Бібліогр.: 8 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT stekolshchikr equivalenceofcarterdiagrams |
first_indexed |
2023-05-20T17:48:23Z |
last_indexed |
2023-05-20T17:48:23Z |
_version_ |
1796154137322192896 |