Root vectors of the composition algebra of the Kronecker algebra
According to the canonical isomorphism between the positive part Uq⁺(g) of the Drinfeld–Jimbo quantum group Uq(g) and the generic composition algebra C(∆) of Λ, where the Kac–Moody Lie algebra g and the finite dimensional hereditary algebra Λ have the same diagram, in specially, we get a reali...
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/155948 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Root vectors of the composition algebra of the Kronecker algebra / X. Chen // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 1. — С. 37–56. — Бібліогр.: 24 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | According to the canonical isomorphism between
the positive part Uq⁺(g) of the Drinfeld–Jimbo quantum group
Uq(g) and the generic composition algebra C(∆) of Λ, where the
Kac–Moody Lie algebra g and the finite dimensional hereditary algebra Λ have the same diagram, in specially, we get a realization
of quantum root vectors of the generic composition algebra of the
Kronecker algebra by using the Ringel–Hall approach. The commutation relations among all root vectors are given and an integral
PBW–basis of this algebra is also obtained. |
---|