Root vectors of the composition algebra of the Kronecker algebra

According to the canonical isomorphism between the positive part Uq⁺(g) of the Drinfeld–Jimbo quantum group Uq(g) and the generic composition algebra C(∆) of Λ, where the Kac–Moody Lie algebra g and the finite dimensional hereditary algebra Λ have the same diagram, in specially, we get a reali...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автор: Chen, X.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/155948
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Root vectors of the composition algebra of the Kronecker algebra / X. Chen // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 1. — С. 37–56. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:According to the canonical isomorphism between the positive part Uq⁺(g) of the Drinfeld–Jimbo quantum group Uq(g) and the generic composition algebra C(∆) of Λ, where the Kac–Moody Lie algebra g and the finite dimensional hereditary algebra Λ have the same diagram, in specially, we get a realization of quantum root vectors of the generic composition algebra of the Kronecker algebra by using the Ringel–Hall approach. The commutation relations among all root vectors are given and an integral PBW–basis of this algebra is also obtained.