Finite groups admitting a dihedral group of automorphisms

Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the sub...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Ercan, G., Güloğlu, İ.Ş.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156017
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156017
record_format dspace
spelling irk-123456789-1560172019-06-18T01:31:08Z Finite groups admitting a dihedral group of automorphisms Ercan, G. Güloğlu, İ.Ş. Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the subgroups CG(α) and CG(β). 2017 Article Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ. 1726-3255 2010 MSC:20D10, 20D15, 20D45. http://dspace.nbuv.gov.ua/handle/123456789/156017 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the subgroups CG(α) and CG(β).
format Article
author Ercan, G.
Güloğlu, İ.Ş.
spellingShingle Ercan, G.
Güloğlu, İ.Ş.
Finite groups admitting a dihedral group of automorphisms
Algebra and Discrete Mathematics
author_facet Ercan, G.
Güloğlu, İ.Ş.
author_sort Ercan, G.
title Finite groups admitting a dihedral group of automorphisms
title_short Finite groups admitting a dihedral group of automorphisms
title_full Finite groups admitting a dihedral group of automorphisms
title_fullStr Finite groups admitting a dihedral group of automorphisms
title_full_unstemmed Finite groups admitting a dihedral group of automorphisms
title_sort finite groups admitting a dihedral group of automorphisms
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156017
citation_txt Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT ercang finitegroupsadmittingadihedralgroupofautomorphisms
AT gulogluis finitegroupsadmittingadihedralgroupofautomorphisms
first_indexed 2023-05-20T17:48:42Z
last_indexed 2023-05-20T17:48:42Z
_version_ 1796154141691609088