Finite groups admitting a dihedral group of automorphisms

Let D=⟨α,β⟩ be a dihedral group generated by the involutions α and β and let F=⟨αβ⟩. Suppose that D acts on a finite group G by automorphisms in such a way that CG(F)=1. In the present paper we prove that the nilpotent length of the group G is equal to the maximum of the nilpotent lengths of the sub...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Ercan, G., Güloğlu, İ.Ş.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156017
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Finite groups admitting a dihedral group of automorphisms / G. Ercan, İ.Ş. Güloğlu // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 223-229. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine

Схожі ресурси