On recurrence in G-spaces
We introduce and analyze the following general concept of recurrence. Let G be a group and let X be a G-space with the action G×X⟶X, (g,x)⟼gx. For a family F of subset of X and A∈F, we denote ΔF(A)={g∈G:gB⊆A for some B∈F, B⊆A}, and say that a subset R of G is F-recurrent if R⋂ΔF(A)≠∅ for each A∈F....
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156022 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On recurrence in G-spaces / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 279-284. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-156022 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1560222019-06-18T01:31:28Z On recurrence in G-spaces Protasov, I.V. Protasova, K.D. We introduce and analyze the following general concept of recurrence. Let G be a group and let X be a G-space with the action G×X⟶X, (g,x)⟼gx. For a family F of subset of X and A∈F, we denote ΔF(A)={g∈G:gB⊆A for some B∈F, B⊆A}, and say that a subset R of G is F-recurrent if R⋂ΔF(A)≠∅ for each A∈F. 2017 Article On recurrence in G-spaces / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 279-284. — Бібліогр.: 6 назв. — англ. 1726-3255 2010 MSC:37A05, 22A15, 03E05. http://dspace.nbuv.gov.ua/handle/123456789/156022 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce and analyze the following general concept of recurrence. Let G be a group and let X be a G-space with the action G×X⟶X, (g,x)⟼gx. For a family F of subset of X and A∈F, we denote ΔF(A)={g∈G:gB⊆A for some B∈F, B⊆A}, and say that a subset R of G is F-recurrent if R⋂ΔF(A)≠∅ for each A∈F. |
format |
Article |
author |
Protasov, I.V. Protasova, K.D. |
spellingShingle |
Protasov, I.V. Protasova, K.D. On recurrence in G-spaces Algebra and Discrete Mathematics |
author_facet |
Protasov, I.V. Protasova, K.D. |
author_sort |
Protasov, I.V. |
title |
On recurrence in G-spaces |
title_short |
On recurrence in G-spaces |
title_full |
On recurrence in G-spaces |
title_fullStr |
On recurrence in G-spaces |
title_full_unstemmed |
On recurrence in G-spaces |
title_sort |
on recurrence in g-spaces |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/156022 |
citation_txt |
On recurrence in G-spaces / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 279-284. — Бібліогр.: 6 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT protasoviv onrecurrenceingspaces AT protasovakd onrecurrenceingspaces |
first_indexed |
2023-05-20T17:48:50Z |
last_indexed |
2023-05-20T17:48:50Z |
_version_ |
1796154144766033920 |