Nonuniqueness of semidirect decompositions for semidirect products with directly decomposable factors and applications for dihedral groups
Nonuniqueness of semidirect decompositions of groups is an insufficiently studied question in contrast to direct decompositions. We obtain some results about semidirect decompositions for semidirect products with factors which are nontrivial direct products. We deal with a special case of semidirect...
Збережено в:
Дата: | 2017 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156025 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Nonuniqueness of semidirect decompositions for semidirect products with directly decomposable factors and applications for dihedral groups / P. Daugulis // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 204-215. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Nonuniqueness of semidirect decompositions of groups is an insufficiently studied question in contrast to direct decompositions. We obtain some results about semidirect decompositions for semidirect products with factors which are nontrivial direct products. We deal with a special case of semidirect product when the twisting homomorphism acts diagonally on a direct product, as well as with the case when the extending group is a direct product. We give applications of these results in the case of generalized dihedral groups and classic dihedral groups D2n. For D2n we give a complete description of semidirect decompositions and values of minimal permutation degrees. |
---|