Nonuniqueness of semidirect decompositions for semidirect products with directly decomposable factors and applications for dihedral groups

Nonuniqueness of semidirect decompositions of groups is an insufficiently studied question in contrast to direct decompositions. We obtain some results about semidirect decompositions for semidirect products with factors which are nontrivial direct products. We deal with a special case of semidirect...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Daugulis, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156025
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nonuniqueness of semidirect decompositions for semidirect products with directly decomposable factors and applications for dihedral groups / P. Daugulis // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 204-215. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Nonuniqueness of semidirect decompositions of groups is an insufficiently studied question in contrast to direct decompositions. We obtain some results about semidirect decompositions for semidirect products with factors which are nontrivial direct products. We deal with a special case of semidirect product when the twisting homomorphism acts diagonally on a direct product, as well as with the case when the extending group is a direct product. We give applications of these results in the case of generalized dihedral groups and classic dihedral groups D2n. For D2n we give a complete description of semidirect decompositions and values of minimal permutation degrees.