Generators and ranks in finite partial transformation semigroups
We extend the concept of path-cycle, to the semigroup Pn, of all partial maps on Xn={1,2,…,n}, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of Pn by means of path-cycles. The device is used to obtain information about generating sets for...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/156026 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generators and ranks in finite partial transformation semigroups / G.U. Garba, A.T. Imam // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 237-248. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We extend the concept of path-cycle, to the semigroup Pn, of all partial maps on Xn={1,2,…,n}, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of Pn by means of path-cycles. The device is used to obtain information about generating sets for the semigroup Pn\Sn, of all singular partial maps of Xn. Moreover, we give a definition for the (m,r)-rank of Pn\Sn and show that it is n(n+1)/2. |
---|