Generators and ranks in finite partial transformation semigroups

We extend the concept of path-cycle, to the semigroup Pn, of all partial maps on Xn={1,2,…,n}, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of Pn by means of path-cycles. The device is used to obtain information about generating sets for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Garba, G.U., Imam, A.T.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/156026
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generators and ranks in finite partial transformation semigroups / G.U. Garba, A.T. Imam // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 237-248. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-156026
record_format dspace
spelling irk-123456789-1560262019-06-18T01:30:53Z Generators and ranks in finite partial transformation semigroups Garba, G.U. Imam, A.T. We extend the concept of path-cycle, to the semigroup Pn, of all partial maps on Xn={1,2,…,n}, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of Pn by means of path-cycles. The device is used to obtain information about generating sets for the semigroup Pn\Sn, of all singular partial maps of Xn. Moreover, we give a definition for the (m,r)-rank of Pn\Sn and show that it is n(n+1)/2. 2017 Article Generators and ranks in finite partial transformation semigroups / G.U. Garba, A.T. Imam // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 237-248. — Бібліогр.: 16 назв. — англ. 1726-3255 2010 MSC:20M20. http://dspace.nbuv.gov.ua/handle/123456789/156026 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We extend the concept of path-cycle, to the semigroup Pn, of all partial maps on Xn={1,2,…,n}, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of Pn by means of path-cycles. The device is used to obtain information about generating sets for the semigroup Pn\Sn, of all singular partial maps of Xn. Moreover, we give a definition for the (m,r)-rank of Pn\Sn and show that it is n(n+1)/2.
format Article
author Garba, G.U.
Imam, A.T.
spellingShingle Garba, G.U.
Imam, A.T.
Generators and ranks in finite partial transformation semigroups
Algebra and Discrete Mathematics
author_facet Garba, G.U.
Imam, A.T.
author_sort Garba, G.U.
title Generators and ranks in finite partial transformation semigroups
title_short Generators and ranks in finite partial transformation semigroups
title_full Generators and ranks in finite partial transformation semigroups
title_fullStr Generators and ranks in finite partial transformation semigroups
title_full_unstemmed Generators and ranks in finite partial transformation semigroups
title_sort generators and ranks in finite partial transformation semigroups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/156026
citation_txt Generators and ranks in finite partial transformation semigroups / G.U. Garba, A.T. Imam // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 237-248. — Бібліогр.: 16 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT garbagu generatorsandranksinfinitepartialtransformationsemigroups
AT imamat generatorsandranksinfinitepartialtransformationsemigroups
first_indexed 2023-05-20T17:48:43Z
last_indexed 2023-05-20T17:48:43Z
_version_ 1796154144976797696